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Abstract— Autonomous manipulation of deformable objects
is a research topic of increasing interest due to the variety
of current processes and applications that include this type of
tasks. It is a complex problem that involves aspects such as
modeling, control, perception, planning, grasping, estimation,
etc. A single robot may be unable to perform the manipulation
when the deformable object is too big, too heavy or difficult to
grasp. Then, using multiple robots working together naturally
arises as a solution to perform coordinately the manipulation
task. In this paper, we contribute a survey of relevant state-
of-the-art approaches concerning manipulation of deformable
objects by multiple robots, which includes a specific classifi-
cation with different criteria and a subsequent analysis of the
leading methods, the main challenges and the future research
directions.

I. INTRODUCTION

Manipulation of deformable objects is an open problem in
the field of robotics. As opposed to the well-studied frame-
work of rigid objects manipulation, being able to predict how
the object is going to behave under the effects of a certain
manipulation action is a crucial and challenging aspect when
dealing with deformable materials. Production of clothes and
footwear, food handling, toys manufacturing and surgery are
some of the applications involving these kinds of objects.
One of the main interests of automatizing some of these
sector’s manipulation tasks is to reduce the health hazards
for human workers, who have to go through uncomfortable,
unpleasant and even dangerous works.

When dealing with certain types of deformable objects one
can find that they are too big, too heavy, difficult to grasp,
too fragile or too soft for being manipulated by a single
robot. Therefore, in order to improve the performance of
the robotic systems in terms of accuracy, computational cost
and flexibility, multiple robotic manipulators with the same
or different roles must be considered to carry out the task.
Previous surveys on the topic of autonomous manipulation
of deformable objects have been developed in the recent
years [1] [2], and in particular the reader is referred to the
comprehensive survey performed by Sanchez et al. [3] for a
global understanding of the current state of the art in robotic
manipulation of deformable objects. However, none of them
is focused specifically on manipulation of deformable objects
by multi-robot teams. We have studied recent approaches
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which are relevant in the field of manipulation of deformable
objects by multiple robots, and we present a set of classifying
criteria. Firstly, we classify the approaches in terms of the
deformation model they utilize. We continue with a classifi-
cation with respect to the dimensionality of the deformable
object. After this, the methods are classified according to
the control strategy they follow. A perception-based classi-
fication is performed next, and finally the approaches are
classified depending on the predominant actions they deal
with. Table I is presented at the end of the paper as a
summary of the surveyed and classified works of the state
of the art. It is worth mentioning that we consider dual-arm
robots as a multi-robot manipulation system, due to the fact
that each arm represents an independent manipulation unit.

II. MODEL-BASED CLASSIFICATION

Due to the highly-dynamic behavior of deformable objects,
correctly modelling deformation is one of the main concerns
when handling these kinds of objects. In the past, many
studies that tackled manipulation of deformable objects were
based on precomputed models, but nowadays there is a
clear tendency on exploiting methods which learn an online
deformation model. Moreover, there are others that do not
consider any deformation model of the object. This model-
free perspective improves both robustness and generality of
the methods. It is important to remark that the following dis-
cussion only includes methods that are implemented inside
the manipulation algorithms. It does not consider models that
represent the deformable object in simulation tests.

A. Methods using precomputed models

Those approaches where a deformation model is computed
offline, previously to the system working in real time, are
analyzed and compared in this section.

Mesh models, with either discrete (mass-spring-damper
elements) or continuous (finite element method) formulation,
are common candidates to represent the deformable object.
Das and Sarkar [4] consider the problem of handling a
2D deformable object exhibiting rheological deformations
(elasticity and viscosity properties) with a group of robotic
manipulators, or a robotic hand with multiple fingers. They
model the deformable object by means of a mass-spring-
damper elements mesh, and deformation is controlled by
applying an optimization technique over the mesh boundary
nodes. Also Li et al. [5] utilize mesh models for the purpose
of manipulating deformable objects (clothes). They have built
a precomputed database which contains 3D mesh models of
different kinds of garments, all of them simulated under the
effects of gravity and picked up in multiple poses. When a



piece of clothing is grasped for performing a manipulation
task, the recognition system creates its 3D mesh model
and extracts some relevant features to be compared with
the ones of the precomputed models from the database.
After finding a correspondence, the algorithm obtains the
optimal manipulation trajectories leading to the desired state.
Similarly to the previous approach, Jia et al. [6] follow
a strategy that is based on building a visual dictionary
in an offline way and using it afterwards to manipulate
highly deformable materials. Their dictionary consists of a
set of vectors that store visual feedback data and end-effector
velocities, whose mapping is obtained by means of a training
phase. Different goal configurations are computed at runtime
depending on the selected manipulation task, and using
sparse linear representation the velocity of the controller is
computed from the visual dictionary. Manipulation tasks like
folding and flattening of cloth pieces with varying material
properties are performed in experimental tests, with a dual-
arm robot and the dual-arm robot in collaboration with
a human. Higher accuracy values may be obtained from
finite element models in comparison with the mass-spring-
damper mesh models. Duenser et al. exploit these kinds of
models in [7] for performing user-specified deformations
over elastic parts by means of a dual-arm robot, under
the quasi-static system assumption. Their approach performs
an efficient real-time optimization in which the Jacobian
relating the joint angles’ changes to the variations of the
object’s shape is continuously obtained. A different method
is presented by Long et al. [8] for obtaining the direct and
inverse dynamic models of a group of two manipulators
cooperatively carrying a flexible object. This technique can
be applied to rigid, articulated and flexible objects whose
deformation can be expressed with a normal distribution.
While the object is modeled using the generalized Newton-
Euler formalism, the robotic manipulators are modeled with
the rigid arm equations and the kinematic Jacobians, and the
two subsystems are linked together by the wrench applied at
the end effector’s grasp.

The main disadvantage of the aforementioned methods is
that the model has to be modified and recomputed each time
the properties of the deformable object change, e.g., a T-shirt
of a different size, or different material, etc.

B. Methods using learned models

Instead of using a model with fixed parameters, the fol-
lowing approaches focus on learning the deformation model
parameters in an online manner.

With the aim of deforming 3D rheological objects, Hi-
gashimori et al. [9] propose a two-phase strategy in which
the parameters defining the behavior of the object model are
obtained previously to performing the desired deformation
action. This approach is able to deform 3D objects to a
desired state but only in one direction, due to the fact
that it relies on a 1D four-element model (2 springs and
2 dampers) of the object. A more recent method in which a
local deformation model is approximated online, through an
estimation-recalibration algorithm, is proposed by Navarro-

Alarcon and Liu [10] for the purpose of deforming 3D soft
objects into 2D desired contours. In this approach, one active
and one or more passive grippers that follow translational
quasi-static movements are servo-controlled to deform the
object. The object’s 2D shape is represented with Fourier
series, and its physical properties are completely unknown.
Also in [11] Navarro-Alarcon et al. describe a method for de-
forming 3D elastic objects with two robotic arms and achieve
different positions and shapes by estimating the Jacobian of
the deformable object. Hu et al. [12] present a similar method
with improved properties in terms of convergence and dy-
namic behavior. They estimate the object’s deformation by
means of an algorithm called FO-GPR (Fast Online Gaussian
Process Regression), which obtains a nonlinear deformation
function and updates it at each time step. In contrast to the
standard GPR methods, the FO-GPR removes uninformative
observation data, which allows to substantially decrease the
computational cost of the algorithm and also improves the
accuracy of the model. Multi-robot low-level manipulation
tasks, in which the deformation function does not vary at dif-
ferent stages (rolled towel bending, towel folding, etc.), are
successfully performed with this technique in experimental
tests, even in the presence of partial occlusions. A different
Jacobian-based strategy is developed by Berenson [13] in
order to perform locally defined quasi-static manipulation
tasks of 1D and 2D deformable objects, with a single or
multiple robotic manipulators. His algorithm exploits the
concept of diminishing rigidity (from the grasping point to
the rest of the object) to compute an approximate Jacobian of
the object, which is corrected afterwards to include excessive
stretching constraints. This approach depends on manual
tuning for setting an adequate evolution of rigidity, and it
cannot represent properly the properties of heterogeneous
deformable objects. However, a recent study by McConachie
and Berenson [14] that is based on the MAB concept (Multi-
Armed Bandit) solves the problem of automatically select-
ing an appropriate deformation model. In particular, their
algorithm is called KF-MANDB, and extends the standard
MAB technique to consider a nonstationary, inter-dependent,
Kalman-filtered framework. They consider a set of grippers
to perform a specific deformable object manipulation task,
and they build a model database with approximate Jacobian
models tuned with different parameter values. At the same
time that the manipulation task is performed, the algorithm
evaluates the utility of each model (i.e. how accurate each
model is for representing the deformation state) and selects
the one with the highest value.

Some additional methods that consider learning a defor-
mation model are [15], in which the stiffness matrix of a
finite element model is obtained by probing the material, and
[16], in which the object’s shape is approximated by Fourier
series. Also a combined deformation-projection Jacobian is
estimated online in [17].

C. Model-free methods

Even more flexibility can be attained, a priori, if the
behavior of the soft object is not related to a specific



deformation model. Next methods take advantage of this and
develop model-free multi-robot techniques for manipulating
deformable objects.

Indirect Simultaneous Positioning is a concept studied by
Wada et al. in [18] with the goal of controlling the position of
a set of points lying within the contour of a 2D deformable
shape. They classify the interest points of the shape into
manipulation points, to be grasped by the grippers, and
positioned points, whose position is to be controlled. Then,
they show two different PID control methods for achieving
the control objective: a first one that relies on an approximate
deformation model, and a second one for small deformations
in which the deformation model is not needed. Deformations
are here restricted to the plane of the 2D object. Another
model-free approach proposed by Bai and Wen [19] deals
with the problem of flexible load transport from a formation
control perspective. They have developed a decentralized
control method for the collaborative manipulation of a de-
formable object by a group of robotic manipulators. Despite
the fact that the geometry of the object and the position of
the grasping points have to be known in advance, no model
of the object is considered. Some assumptions made in this
study are that the deformation of the object is small and
only appears in a small area around the grasping points, and
also that only translational movements are performed. Within
the field of robotic cutting of deformable objects, Long et
al. [20] follow a pressing and slicing strategy for separating
soft parts without explicitly modeling the object. Apart from
the cutting robot, which is equipped with the cutting tool, a
second robot is considered to provide a pulling force (whose
magnitude is obtained from experiments) that reduces the
necessary cutting force.

III. OBJECT-BASED CLASSIFICATION

A different classification of the manipulation strategies
can be performed from the perspective of the manipulated
object. Real deformable objects are always lying on the
3D space, but some of them are studied by omitting those
dimensions which are of a much smaller magnitude than
the rest. For instance, a rope can be studied by considering
it a 1D entity with null cross section provided that its
length is much larger than its thickness in both transversal
directions. Thus, the following subsections differentiate the
multi-robot manipulation approaches by the dimensionality
of the deformable object.

A. Unidimensional objects

As reported before, ropes and also cables are typical
examples of unidimensional objects. A recent approach by
Zhu et al. [16] tackles the problem of manipulating 1D
flexible cables to match a desired 2D contour, by means
of a dual-arm robot equipped with special-purpose grippers.
Inspired by [10], they represent the cable’s shape with
truncated Fourier series. To reach a compromise solution
between accuracy, computational cost and under-actuation,
only two harmonics of the series are accounted. As opposed
to [10] this method considers also rotational movements,

but it is not capable of predicting whether a final shape is
reachable or not. The challenging task of in-air knotting of
1D ropes is tackled by Kudoh et al. in [21]. After extracting a
set of hand motions with high reusability (skill motions), they
develop a specialized hardware system to perform the in-air
knotting task. In particular, this system consists of a dual-
arm robot equipped with three-finger hands and an RGB-D
camera, which is utilized to achieve the initial grasping of the
rope. Also in [22], [23] a 1D rope is deformed to a target
configuration by two robotic arms. The algorithm created
by Tang et al. in [22] is called TSM-RPM (Tangent Space
Mapping-Robust Point Matching), and maps the evolution
of the object’s curve tangents to reach the desired config-
uration between different initial configurations, by means
of a non-rigid transformation function. The authors show
in simulations how the TSM-RPM algorithm outperforms
the TPS-RPM (Thin Plate Spline-Robust Point Matching) in
terms of overstretching avoidance and fidelity of the final
configuration with respect to the desired one.

B. Bidimensional objects

The main examples of 2D deformable objects, in terms
of the number of approaches considering them, are the
cloth-like ones. This type of object is unable to withstand
compression forces, and usually shows high rigidity values
when submitted to traction forces. Thin panels of deformable
materials can be considered as 2D objects too.

Alonso-Mora et al. [24] propose a hybrid central-
ized/distributed algorithm for the transport of deformable
objects by multiple robotic manipulators. While the cen-
tralized approach is considered in order to provide a global
guidance to the manipulators, the distributed one enables the
manipulators to move according to the global planning with-
out explicit communication between them. This algorithm
includes collision avoidance with both static and dynamic
obstacles and shape preservation constraints. Three different
2D deformable objects (a foam mat, a bed sheet and a towel)
are collaboratively carried to a desired position by a multi-
robot team in experimental tests. Deformation is controlled
here but only for the purpose of maintaining the structural
integrity of the object during the transportation. Focusing
also on 2D deformable objects collaborative manipulation,
Langsfeld et al. [15] develop a multi-robot system that allows
to clean plastic parts with two fixed redundant robotic arms
of differentiated roles: the first arm cleans the part without
deforming or breaking it while the second one holds the
object in a proper position. The object is assumed elastic and
is modeled with 1D finite elements whose elastic properties
are updated as the cleaning task proceeds. Regrasping actions
are optimized in order to minimize the part deformation and
the cleaning time. A different collaborative situation in which
a 2D deformable sheet is manipulated between a person
(uncontrollable agent) and a dual-arm robot (controllable
agent), equipped with a Kinect camera, is studied by Kruse
et al. [25]. Initially, the opposite ends of a piece of fabric are
grasped by the human and the robot, and the control goal is
to minimize the amount of wrinkles and local deformations



produced when the human manipulator performs local move-
ments, that distort the initial undeformed state. Collaborative
human-robot tasks, besides robot-robot ones, are considered
too by Jia et al. in [6] for cloth folding, cloth flattening and
cloth placing. The effectiveness of this method is affected by
some limitations in terms of illumination and relative colors
of the clothes in the 2D images.

C. Tridimensional objects

Being probably the most challenging examples of de-
formable objects for robotic manipulation, 3D objects range
from soft foam pieces to food dough, and represent the most
general case in which all spatial dimensions are accounted.

The problem of deforming 3D elastic foam parts to a
desired state by multiple robots is tackled by Navarro-
Alarcon et al. in [26]. They propose a robust vision-based
controller which accounts for noise and uncertainty in the
model estimation. The elastic properties of the deformable
object are unknown, and therefore the Jacobian matrix is
estimated online with the Broyden update rule [27]. They
perform various experimental tests with one and two active
manipulators. 3D soft foam parts are also considered by
Long et al. for a cutting process in [20]. In this approach,
experimental tests are carried out over the soft foam parts,
that are cut to a predefined cutting depth through sequential
cutting actions. The cutting trajectory is specified by a series
of visual markers attached to the object. In [19] a lightweight
3D soccer ball is collaborativelly manipulated by two fixed
robotic arms, once fed by a human agent. The manipulation
task is divided in two steps: the first one implies statically
holding and squeezing the ball, and during the second
one, linear or circular trajectories are performed. All the
previous approaches consider homogeneous objects whose
material properties do not vary across their volume. In [17],
however, Alambeigi et al. propose a multi-robot method for
manipulating 3D compliant objects that show heterogeneous
material properties. An online estimation system, based on
the Secant approximation and the Broyden’s method, obtains
the combined deformation-projection Jacobian which allows
to predict in real time the deformation and the camera param-
eters. Thus, their method is able to work with uncalibrated
vision sensors. With regard to the control algorithm, a con-
strained optimization problem is solved with the previously
computed Jacobian to accomplish the predefined tasks in an
environment with potential disturbances.

IV. CONTROL-BASED CLASSIFICATION

In contrast with the previous classifications, here the focus
is on the control aspects rather than in the modeling. The ap-
proaches that tackle multi-robot manipulation of deformable
objects depend usually on singular control laws and complex
algorithms. This makes the control-based classification het-
erogeneous, since a broad variety of approaches is available,
and in some cases the approaches cannot be directly assigned
to an specific group due to its uniqueness. However, we
propose three different control groups in which several
studied methods are suitable for being included. Additional

groups that can be considered include strategies based on
optimal, nonlinear or Jacobian-based control techniques too,
but we just include this information in Table I for brevity.

A. Classic control

As long as an approach follows at some level either a
proportional or a PID control law, among others, it can
be treated as a classical control method. The most recent
strategies tend to relegate the classic control techniques to
the low-level software layers.

A PD-position feedback controller with gravity compensa-
tion is adopted by Sun et al. in [28]. This approach considers
a general flexible payload whose position and orientation
must be controlled by multiple robots, at the same time that
vibrations at each contact are suppressed. Deformation of
the object is obtained from a finite element model, whose
dynamics are decomposed into rigid and flexible components
that represent the original undeformed shape and the change
in shape due to deformation, respectively. Also Wada et al.
develop the core of their control strategy in [18] over a
classic controller, that in this case is a simple PID control
law. They propose two different methods: a model-free PID
control system, which is valid only in the domain of small
deformations, and a model-dependent PID controller, that
provides zero error convergence when the deformation is
large. In the latter method a spring mesh approximate model
of the object is considered. As opposed to the previous
approaches, a classic control method can be found in [24]
but at the low-level horizon. Here, velocities of the individual
manipulators are controlled by means of a PID control law.
This controller may introduce some additional errors in the
system when dealing with some types of materials due to
a buildup in the integral term. It is important to remark
that the use of the classic control law is secondary in this
approach, and the main part of the control algorithm (high-
level control) is based on advanced planning strategies and
convex optimization techniques.

B. Robust control

In robust control techniques, modeling errors and uncer-
tainties are taken into account with the aim of extending
the controller’s validity. This type of control strategy is well
suited when dealing with deformation models due to the fact
that uncertainties are always present in the model parameters.

A robust control strategy is considered in [4], where each
manipulator’s motion is driven by an independent robust
controller that is able to work in the presence of model
parameters’ uncertainties. The global motion planner makes
unnecessary any communication between the system agents.
Hu and Vukovich develop a shape control system in [29]
derived also from the robust control theory. This method aims
to produce a desired out-of-plane deformation on a flexible
plate with embedded microactuators and sensors, which are
represented as a whole in an integrated mathematical model
obtained from the Hamilton’s principle. In [26] the authors
propose a robust passivity-based controller that has into
account the presence of a time-varying disturbance in the



deformation flow estimation, and in [30] the LMI (linear ma-
trix inequality) optimization allows to identify the dynamic
parameters of the robotic structure and to define a robust
control strategy. In spite of not being a formally developed
robust controller, the method proposed by Hu et al. in [12]
emphasizes demonstrating the robustness of several aspects
it covers. One of these aspects is the selection of the state
features, in which task-relevant prior knowledge improves
the robustness and effectiveness of the control process.
Robustness to moderate levels of occlusion, provided that
no significant or fast changes happen in the scene, is also
achieved thanks to an online learning mechanism.

C. Adaptive control
Uncertainties and errors in the model parameters are also

assumed in adaptive control methods, and their values are
allowed to change over time in order to adapt to the time-
varying systems. Learned deformation model methods are
natural candidates for the adaptive control strategies.

An example of the last statement is the adaptive control
system by Navarro-Alarcon et al. in [11] to estimate the
object’s deformation parameters. For the arms to move in a
coordinated way, a saturated velocity controller is developed
here. In the context of working without deformation model,
Bai and Wen propose in [19] two different control schemes:
a scheme where the robots velocity is predesignated and
an adaptive control technique in which the group velocity
is estimated by each agent. A special case of the latter
technique, in which the group velocity is known by a single
agent and the rest have to estimate it, is explained and vali-
dated in experimental tests too. However, an adaptive control
system can also be adopted when a precomputed deformation
model is present. Based on the Potential Field Method, that
creates an attractive force to the goal configuration and a
repulsive one around obstacles, the approach by Dang et
al. [31] is focused on controlling the shape of a flexible
surface. The surface is modeled as a mass-spring-damper
mesh, and a group of embedded microactuators is considered
to deform it. These actuators are divided into two different
groups: absolutely actuated points, in which information
about desired point coordinates is provided, and relatively
actuated points, where relative distances to other neighboring
points are set. Different dynamic shape morphing adaptive
control laws are designed for each group of microactuators
including parameters uncertainty.

V. PERCEPTION-BASED CLASSIFICATION

As it can be inferred from the previous section, many
different control algorithms are found when analyzing the ex-
isting approaches in multi-robot manipulation of deformable
objects. In turn, each control method depends on different
perception systems. This fact motivates the perception-based
classification that we present here, where three main groups
are identified in terms of the measured data.

A. Force-based perception
Perception systems focused on forces rely on the fact

that interacting with deformable objects necessarily implies

a force exchange between all involved agents. For instance,
in order to grasp and raise an elastic foam part with a
robotic gripper an initial grasping force is required to prevent
slipping during the lifting action. Afterwards, a second
vertical force must be applied to compensate the part’s
weight and raise the part. By measuring and controlling these
forces, some deformable objects manipulation tasks can be
successfully carried out.

This fact is shown in [19], where a force perception system
is designed. Their decentralized control method considers
the contact forces between the robotic manipulators and
the flexible load in order to describe the deformation of
the soft object, and also to provide an implicit way of
communication to the manipulators. These contact forces are
maintained by the controller to avoid sliding of the object
during the manipulation task. Delgado et al. also consider
contact forces by means of tactile sensors in [32], in order
to develop an agile and adaptable model-independent multi-
robot system for dual-arm in-hand manipulation tasks. They
propose a novel representation of the tactile data based on
tactile images, which are obtained through a combination
of dynamic Gaussians. This representation allows them to
design a manipulation controller that maintains and adapts
the contact configuration according to the task requirements.

B. Vision-based perception

As the manipulation process evolves, deformation appears
and the shape of the object changes. By monitoring these
changes with a vision system, the relation between the
motion of the manipulators and the deformable object may
be obtained, and afterwards the derived model can be utilized
by the control algorithm to produce the desired deformation.

Clear examples of vision-based perception systems are
included in most of the methods developed by Navarro-
Alarcon concerning multi-robot manipulation of deformable
objects, like [26], where an energy-based dynamic-state
feedback velocity controller is developed. In this approach,
deformation of the manipulated object is tracked by a visual
feedback system, in which the feedback points are treated
with a nonlinear function to constitute a deformation feature
vector. Four different types of deformation are defined for the
control purposes: point-based, distance-based, angle-based
and curvature-based. Calibration of the vision system is
not needed here. In [11] the positions of multiple visual
markers, which are placed over the surface of the deformable
object, are measured with the camera in order to obtain the
position and shape errors. This approach can cope with un-
calibrated kinematic transformations too. Again, the Fourier-
based controller in [10] constantly updates and recalibrates,
if necessary, the local deformation model using the vision
sensor data. This perceived data also include the full contour
of the deformable part, that allows to compute the shape
error. One requirement of this method is that a high contrast
is needed between the manipulated object and the image
background. The recognition system by Li et al. in [5] is
based on the Kinect sensor. They perform a preliminary
3D segmentation, which obtains the masks of the garments



on the depth images, that is followed by the KinectFusion
method invocation, which provides the 3D reconstruction.
Binary features are extracted from the 3D reconstructed
model in order to make the comparison with the models from
the database. The Kinect sensor is also utilized by Tang et
al. in [23] to obtain point clouds of a rope lying on a flat
surface. With the aim of manipulating the rope to get some
desired configurations, they have designed a multi-robot
system based on the CPD (Coherent Point Cloud) non-rigid
registration method, which obtains a smooth transformation
function from two different point clouds. This method shows
strong robustness under occlusions and allows to perform the
next three sequential steps: state estimation, task planning
and trajectory planning.

C. Force and vision-based perception

By combining the advantages of force and vision percep-
tion systems, a more robust and accurate control method
may be obtained. In some cases in which a specific tensional
state must be induced in the object for the force control to
work, the vision system is the one in charge of driving the
object to that tensional state. This happens in [25], where a
hybrid force-vision controller is proposed. The vision system
must drive the manipulated 2D sheet to a taut state, so
that the force controller can start to decrease the amount
of wrinkles (the system is unable to measure force while the
sheet is not taut), by either moving or applying traction to the
sheet to counteract the deformations created by the human
manipulator. Also in [20] an adaptive force-vision control
system is utilized to separate deformable objects. Here, the
force controller prevents global deformation or damage in
the area around the cut, and the vision system updates online
the trajectory according to the sensed deformation and the
modeling errors. A different strategy is followed in [24] with
a low-level velocity controller that takes into account the
forces that are transmitted through the manipulated object.
Despite the fact that these forces cannot be sensed (i.e. they
are virtual forces), they act in the decentralized planner as
an indirect communication channel which is complemented
with an inter-agent vision system. This vision system is
implemented on each robotic manipulator, and obtains the
position and velocity of the neighboring agents. The force
controller in [9], which regulates the loading over the de-
formable object and obtains feedback data from a load cell,
is also complemented with a vision system that monitors the
object deformation with a camera.

VI. ACTION-BASED CLASSIFICATION

Manipulation of deformable objects involves a sequence
of different individual actions that must be performed by
the robotic system. These low-level basic actions can be
classified into two groups: deformation actions, which consist
in inducing relative displacements of the deformable object,
and transport actions, which produce absolute displacements
of the centre of gravity of the object. Thus, this classification
differentiates between methods where the main contribution
is provided either by deformation or by transport actions.

A. Deformation actions

Predicting and controlling deformation is usually the fore-
most concern when manipulating deformable objects due to
these reasons: manipulation tasks often require the object
to be deformed in an specific way, and also the “unstable”
behavior they present may result in damaging the manipula-
tors or the objects themselves in case the deformation is not
controlled.

An interesting study about deformation actions can be
found in [33]. Cherubini et al. propose a vision-based method
for deforming 3D materials exhibiting plastic deformation
that includes the following initial assumptions: a) it exists
a finite set of deformation action types (pushing, tapping
and incising) and b) the deformation actions have a local
influence into the object. A preliminary study with human
participants is performed in order to validate these state-
ments, in which the participants are requested to form a
certain shape with kinetic sand in a sandbox, with one or
both hands. This process is recorded with a fixed RGB-D
camera, and afterwards the output data are collected into a
data set which is intended for training neural networks. The
study shows that the first assumption is valid, provided that
mixed actions also exist, and that the second one has to be
relaxed, because actions may affect, in some cases, to the
entire state of the material. The assumption of a limited set of
manipulation primitives is considered also by Ruggiero et al.
[30], in the framework of the RoDyMan project. This project
aims to develop new strategies in robotic nonprehensile
dynamic manipulation of deformable objects, with a dual-
arm anthropomorphic robotic platform for performing the
challenging pizza-making process as the final demonstrator.
The pizza-making process includes various deformation sub-
tasks, which they divide into two different nonprehensile
manipulation primitives: sliding and tossing. They show
diverse results of the project that include a method for real-
time tracking of the manipulated object, in which an RGB-D
sensor is utilized for obtaining a point cloud that serves to
create a finite element model of the object. From a different
perspective, Simon and Basri [34] develop a shape matching
method for finding a set of deformation actions such that
the shape of an initially undeformed surface is transformed
into a specific deformed configuration. The initial shape is
discretized to a 2D linear elastic finite-element model, that is
submitted afterwards to inner condensation in order to reduce
the mesh nodes to the ones of the contour, while retaining
the physical properties of the rest of the model. A non-linear
optimization procedure allows to find the contour forces that
produce the desired elastic deformation. It is important to
remark that the method is locally defined, which makes it
dependent on the source and target shapes initial alignment.

B. Transport actions

Transport actions are necessary when the manipulation
task requires the deformable object to be placed on a position
which differs from the initial one. High-level tasks usually
imply to perform these kinds of actions at some specific
instants of the process.



As mentioned before, decentralized control techniques are
proposed for transporting a flexible payload by a multi-robot
team in [19]. They limit deformation actions to the purpose
of providing the required grasping force, while the transport
actions have the main role in the tasks. Only the translational
problem is considered, leaving the extension to the rotational
case open. Also in Alonso-Mora’s work the vast majority of
the manipulation actions are transport ones. In [24] the con-
sidered manipulation tasks relegate deformation actions to
avoiding obstacles and overstretching during the ensemble’s
motion. The same idea is developed by McConachie and
Berenson in [14], due to the fact that the purpose is to move
the object to a desired position while avoiding obstacles and
maintaining the structural integrity of the manipulated piece
of fabric. Another interesting transportation case is studied
by Sreenath and Kumar in [35], where a box is held in the air
through deformable cables attached to a team of quadrotors.
The goal of this method is performing feasible trajectories
for the quadrotors with the payload, which is simulated by
means of a hybrid dynamic model.

VII. CONCLUSION

From the analysis of the different methods that tackle the
problem of manipulation of deformable objects by multiple
robots, summarized in Table I, some conclusions may be
inferred. Overall, autonomous manipulation of deformable
objects is an important and complex problem that is gaining
attention in the recent years. It seems clear that using mul-
tiple robots is a necessary condition in order to perform the
manipulation tasks with flexibility and robustness guarantees,
and also to extend the workspace.

Focusing now on the specific solutions we have studied, al-
though model-based approaches can have some advantages in
terms of computational cost and accuracy, those approaches
based on learning a deformation model in an online manner,
or those that directly avoid considering a deformation model,
are far more flexible and robust. This flexibility is due to the
fact that less assumptions are made with respect to the nature
of the object’s material and the manipulation system.

Concerning perception methods, hybrid force-vision sys-
tems should be chosen to obtain a more complete state of
the deformable object. However, depending on the strategy
or the system characteristics it may happen that only one
type of feedback information is available.

In general, some common issues that manipulation meth-
ods are not able to solve yet are the ability to manipulate
objects of very different properties with one single strategy
and the complete integration between deformation control
and transportation of the object. In addition, most of the
methods are focused on low-level tasks, and numerous hard
constraints are imposed to the systems in order to enable an
accurate object’s state perception.

Future directions in the field of manipulation of de-
formable objects by multiple robots include many different
topics. Some of these aspects are shared among the afore-
mentioned strategies, and could be summarized as follows:
improving deformation sensing systems and deformation

models; prediction of future deformation states; automatic
computation of the feasible object’s configurations and the
object’s deformation limits; extension of the methods to
the 3D space and to different kinds of deformable objects;
substitution of fixed robots by mobile robots; and increasing
the number of cooperative robotic manipulators.
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