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Abstract— Estimating the state of deformable objects is vital
for manipulation, while it is also challenging due to high
degrees of freedom and the nonlinearity of the dynamics model.
In order to achieve robust state estimation, we propose a
novel framework shown in Fig. 1, which includes point cloud
recovery, node registration, feedback linearization controller,
and dynamical simulation modules. Compared with previous
works, the point cloud recovery step is able to robustly provide
a complete point cloud of the object even under massive
occlusions. In addition, the feedback linearization controller
is able to stabilize the rope tracking procedure via applying a
control law that first cancels higher-order terms in the dynamic
equation and then uses an additional PD control law to control
the remaining linear dynamics. Experimental results validate
the effectiveness and robustness of the proposed framework.
The experimental videos can be found at [1].

I. INTRODUCTION

Manipulating deformable objects has great values for a
wide variety of robot applications such as food delivery,
medical surgery, cable assembly, and household works. In
order to achieve robust performances for those challenging
manipulation tasks, estimating the state of deformable ob-
jects is crucial. In this work, we focus on state estimation of
linear deformable objects such as ropes and cables.

Researchers have studied the rope manipulation tasks [2]–
[11] and suggested two main challenges. First, there is
no compact state representation of non-rigid objects. Many
control and planning algorithms need clear states in order
to optimize the cost function. The lack of canonical form
often limits the usage of those approaches. Furthermore,
perception challenges, due to occlusions, make the state
estimation even harder. Second, the dynamics of non-rigid
objects make planning tough. Due to high degrees of freedom
of the rope, motions of non-rigid objects are unpredictable,
which makes it challenging to approximate the highly non-
linear dynamics functions. Algorithms like linear-quadratic
regulator and model predictive control heavily rely on the
dynamical functions.

In recent years, several studies have proposed to tackle the
challenges in state estimation and dynamics approximation of
deformable objects. Learning-based methods have achieved
promising results on rope manipulation tasks, but require a
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large amount of training data in order to learn rope’s state
representation and the dynamics transfer function. We cir-
cumvent these problems by dividing rope manipulation into
rope tracking and rope motion planning. To be more specific,
we utilize a simulated rope to track its real counterpart and
plan motions based on the simulated dynamics. Compared
with learning-based methods, using such an interpretable
representation not only alleviates the difficulty in approxi-
mating rope dynamics but also makes the representation task-
agnostic. In this article, we primarily focus on rope tracking
and state estimation.

One class of methods that focuses on the challenges in
state estimation is learning latent representations from pixels.
Some approaches [6], [9] do not enforce the geometrical
constraints of the rope in the learned space, which limits
the interpretability of the representation. In contrast, [7]
imposed contrastive loss in order to bring the positive pairs
(similar rope’s configurations) closer in the latent space and
the negative pairs (dissimilar rope’s configurations) further
away. By contrastively learning pixel-wise descriptors, [8]
claimed that dense depth object descriptors could enforce
geometrical information on the learned visual representations
of a deformable rope.

Another class of approaches is to track the rope by fitting
a Gaussian Mixture Model (GMM). Prior works studied the
tracking of deformable objects in the presence of occlusions.
[2]–[4] utilized a simulated rope and computed its reference
pose by non-rigid registration. [10] claimed the redundancy
of the physics engine. From the experiments, however, we
found that the physical simulation plays an important role
in enforcing geometrical constraints. The probability-based
method is statistically correct in point registration, but phys-
ically wrong to represent a rope.

In this paper, we introduce a rope tracking approach with
three main parts as shown in Fig. 1: point cloud recovery,
point registration, and feedback linearization controller in
the physical simulation. In the point registration, a rope is
represented by N nodes and registered to sensor observations
with a structure preserved registration (SPR) algorithm [11].
From experiments, we have noticed the SPR algorithm is
insufficient in handling large area occlusions. Thus, we
introduce a mask-based point recovery preprocess module to
enhance the robustness of tracking. To consider the dynami-
cal constraints, a simulated rope is constructed in the physics
engine and controlled by a feedback linearization controller.
We show by experiments that the overall framework is able
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Fig. 1. Overall framework for rope tracking. Point cloud recovery, node registration, feedback linearization controller, and dynamical simulation run in a
closed loop to provide a robust tracking result.

to track the rope robustly.
The rest of this paper is organized as follows: Chapter II

briefly introduces our previous work; Chapter III talks about
the implementation details including point cloud recovery
and the feedback linearization controller; Chapter IV presents
preliminary experimental results; Chapter V discusses the
proposed framework and points out potential future works.

II. BACKGROUND AND PREVIOUS WORKS

State estimation and task planning are two of the main
challenges in deformable object manipulation. We have ex-
tensively studied both topics.

For state estimation, the difficulties lie in several aspects:
1) lacking explicit correspondence between the object point
cloud and the object nodes; 2) sensor noise and outliers; 3)
missing points in the object point cloud due to occlusions.
To cope with the above challenges, a novel state observer for
tracking soft objects was designed in [2]. It utilized a Gaus-
sian mixture model (GMM) to construct the estimator, where
each object node is regarded as a Gaussian centroid, and the
point cloud is the data set sampled from the Gaussian mixture
model. The node position, i.e., the mean of each Gaussian
component, can be estimated by maximizing the likelihood
of point registrations. To further improve the robustness of
estimation under occlusion, a topological regularization was
applied in [11] to the mixture model, which preserves the
topological structure of the object during registration both
locally and globally.

Both imitation learning and optimization-based methods
have been studied to address the task planning problem.
Inspired by the idea of imitation learning, we developed a
‘trajectory warping’ algorithm [3], which is able to general-
ize the human-taught trajectory from a specific environment
to a new environment. From the experiments, we observed
that the ‘trajectory warping’ algorithm is not able to maintain
the structural information of the deformable objects. To deal
with this problem, a tangent space mapping (TSM) algorithm
[12], which maps the deformable object in the tangent space
instead of the Cartesian space, was developed. The new algo-
rithm was shown to be robust to the changes in the object’s
pose/shape, and the object’s final shape was similar to that
of training. In addition to imitation learning-based methods,
we also proposed a robust local linear model approximation

method [5], where we robustly approximated the model of
the object in real-time and then used an optimization-based
trajectory planner to find the best movement of the robot.

In this paper, we specifically focus on the state estima-
tion for deformable objects. From the observation that our
previous tracking algorithm suffers from massive point cloud
occlusion, we develop a point cloud recovery module to deal
with this problem for robust tracking performance. Another
major contribution of this paper is to study the control law
to be applied to the simulated object in the physics engine
in order to track the desired position.

III. ALGORITHM DETAIL

A. Point Cloud Recovery

The state estimator registers the old simulated rope to
the point cloud in order to update the simulation. During
tracking, human hands or robot arms may occlude the
object resulting in a partially observed point cloud. From
experiments, we found SPR [11] is robust when the occluded
part is small. However, if a large portion of the point cloud
is missing (Fig. 2) or the tip of the cable is occluded, SPR
would fail to estimate the correct cable state.

Inspired by the background subtraction method in com-
puter vision, we proposed to use a foreground mask to
recover the occluded point cloud (Fig. 3). Fig. 3 (a) shows
the environment background captured with a stationary RGB-
depth camera. (b) and (c) are RGB images with their
color-filtered point clouds in time step t − 1 and t. (d) is
the foreground mask constructed by subtracting background
from frame t.

The goal of the point cloud recovery is to complete point
cloud in frame t using the foreground mask and the recovered
point cloud in frame t−1 . Fig. 4 provides an example of the
process. First, point clouds at frame t−1 and t are projected
to the RGB image plane as (a) and (c) show. Second, we
compute a foreground mask in frame t as shown in (b). Third,
the projected image in frame t − 1 is multiplied in pixel
with the mask to obtain the complementary part. Finally,
the complement is combined with origin point clouds in
frame t to get (d). The advantage of this operation is that
it could distinguish rope movement from occlusion. For the
convenience of discussion, we divide rope’s point clouds in

Workshop on Robotic Manipulation of Deformable Objects (ROMADO)
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020



Fig. 2. (left) Kinect is occluded by human arm. (middle) Partial observed
point cloud. (right) Foreground mask.

each frame into four parts and labeled 1 to 4 in Fig. 4. The
point cloud in the frame t (c) at part 3 is missing compared to
the frame t−1 (a). However, the foreground mask (b) shows
no occlusion at part 3, so the corresponding point cloud at
frame t − 1 will be discarded. The proposed algorithm is
summarized in Algorithm 1.

Due to sensor noise and mismatch on RGB and depth
cameras, there are alignment errors when constructing the
foreground mask. This would result in a segmentation error
of the point cloud. In our case, we prefer a false-negative
mask rather than a false-positive. In other words, we could
discard some occluded points, but not preserve inexistent
points. Thus, an erosion operation is applied on the fore-
ground mask to avoid false-positive masks.

Algorithm 1: Point Cloud Recovery

1 Initialize the environment, record the background;
2 Put the rope in the environment, obtain the point

cloud of the rope using a color filter, t+ = 1;
3 while Tracking do
4 Obtain the point cloud of the rope using a color

filter;
5 Obtain the foreground mask by subtracting the

background from the current frame;
6 for each pixel of the frame do
7 if point cloud in frame t is True then
8 preserve the point cloud ;
9 else if point cloud in frame t− 1 is True and

foreground mask is True then
10 preserve the point cloud ;
11 else
12 discard the point cloud ;
13 end
14 end
15 t = t+ 1;
16 end

B. Rope Registration and Interpolation

The rope can be represented by N nodes Xt at each
time step. Xt are registered from the recovered point cloud
Y t
raw using SPR [11]. SPR maximizes the likelihood of a

standard GMM with external cost on both the global and
local structure of the rope. The registration result, however,

(a) (d)(c)(b)

Fig. 3. (a) Background. (b) t−1 frame. (c) t frame. (d) Foreground mask.

Fig. 4. Point Cloud Recovery

is a local optimal. The constraint which compels adjacent
node distance: ||xi−xi−1||2 ≡ c ≥ 0 is not strictly satisfied.
In practice, this soft constraint results in ‘zig-zag’ shapes
of tracking. To handle this problem, we add a cubic spline
interpolation step to uniformly resample the node positions
along the rope after each registration. Therefore, our solution
satisfies both the global and local structure via SPR and also
avoids potential ‘zig-zag’ shapes during tracking.

C. Dynamical Simulation with Physic Engine

As a physical entity, the object needs to satisfy a series of
physical laws, such as kinematics, dynamics, and collision
constraints, which we do not consider in the node registration
step. To account for those constraints, the Bullet physics
engine is used to simulate the dynamical behavior of the
rope.

Most of the previous works [2], [4] used PD control laws
to track the target position. Though Tang et al [2] claimed
to use an impedance controller for rope tracking, the control
law they used was still a PD. Considering that the dynamics
of the rope is nonlinear in the physic engine, a simple linear
PD controller is not able to affect the nonlinear behaviors of
the dynamics and stabilize the overall tracking procedure. As
shown in Fig. 1, we proposed to use an feedback linearization
controller to account for the nonlinear dynamics of the rope.
The basic idea of the controller is to first transform the
nonlinear dynamics to a linear system and then apply linear
control law to stabilize the system.

In the physics engine, the rope is modeled as a chain

Workshop on Robotic Manipulation of Deformable Objects (ROMADO)
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020



of linked capsules. Each capsule is connected by a 2 DOF
spherical joint (without twist motion). Therefore, the rope
dynamics have the same form as the standard multi-joint
robot.

τ =M(q, q̇)q̈ + c(q, q̇)q̇ + g(q) + τext (1)

(1) shows the rope dynamics in joint space, where q,
τ , M , c, g, and τext represent the joint angle, joint force,
inertia matrix, coriolis term, gravity, and the external force
respectively.

The joint angle of the rope can be obtained via a simple
‘inverse kinematics’ of the chain, and all other terms can
be easily obtained directly from the simulator. Then the
feedback linearization control law is given by,

τ =M(q, q̇)q̈d + c(q, q̇)q̇+ g(q)+Kp(qd− q)+Kd(q̇d− q̇)
(2)

where Kp, Kd are tuned PD parameters, qd is the desired
joint position.

Compared with previous works, the feedback linearization
controller is able to cancel the nonlinearity of the rope
dynamics by the first three terms in (2). Then by properly
selecting Kp and Kd, we are able to let the simulated
rope track the desired point cloud and stabilize the entire
procedure.

IV. PRELIMINARY EXPERIMENTS

To test the proposed rope tracking framework, several rep-
resentative rope tracking tasks were conducted. Preliminary
comparisons between our proposed framework with previous
works are shown in this chapter. The experimental videos can
be found at [1].

Shown in Figs. 2, 5, and 6, a 1-meter-long red rope was
placed on a green table. A Microsoft Kinect (version 2)
was utilized to get point cloud of the rope. The simulated
rope in the Bullet Physics Engine was modeled by fifty
linked capsules with density 1.5g/cm3. The stiffness gain
Kp and damping gain Kd were set as 10N/m and 0.5Ns/m
respectively in the feedback linearization controller.

During the experiment, we manipulated the rope at a
moderate speed. Fig. 5 shows the tracking results using
the previous work [11], which do not have point cloud
recovery module and feedback linearization controller. The
tracking result is not stable due to missing point cloud. Fig. 6
shows the tracking result under occlusion with our proposed
framework. A large portion of point cloud is missing due to
occlusions. With the point cloud recovery module, we can
recover most of the point cloud as the middle row images
show, which improves the performance of node registration.
Some point cloud, however, may still be missing when the
rope is moving under occlusion even with the point recovery
module. Such is a case when human holds the rope in hands
as Fig. 6(c) shows. In this case, the foreground mask does

RGB

Point 
Cloud

Dynamical 
Simulation

(a) (b) (c) (d)

Fig. 5. Without point cloud recovery. Waving hands above the rope without
touching the rope. Registration fails and the simulated rope deforms to
unexpected shapes due to point cloud missing.
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Fig. 6. With point cloud recovery. Tracking is robust to large occlusion.

not have historical information to recover the points until the
occluded part is exposed to the Kinect again.

V. FUTURE WORKS AND DISCUSSION

This paper proposed a robust framework for tracking
deformable objects, which includes point cloud recovery,
node registration, feedback linearization controller, and dy-
namical simulation modules. Compared with previous works,
the point cloud recovery step is able to robustly provide
a complete point cloud of the object even under massive
occlusions. In addition, the feedback linearization controller
is able to stabilize the rope tracking procedure via first
canceling higher-order terms in the dynamic equation and
then using an additional PD control law to control the
remaining linear dynamics. For future work, we would like to
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continue refining the overall structure of deformable objects
manipulation to make the whole process more robust. In
addition, more experiments on other challenging objects,
such as clothes and sponges will be conducted.
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