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Abstract— Shape control has become a prominent research
field as it enables the automation of tasks in many applications.
Overall, deforming an object to a desired target shape by using
few grippers is a major challenge. The limited information
about the object dynamics, the need to combine small and
large deformations in order to achieve certain target shapes and
the non-linear nature of most deformable objects are factors
that significantly hamper shape control performance. In this
paper, we propose a shape control method for multi-robot
manipulation of large-strain deformable objects. Our approach
is based on multi-scale Laplacian descriptors that feed an FMM
(Fast Marching Method) for elastic shape contour matching.
The FMM's resulting path and the Laplacian operator are used
to define a control strategy for the robot grippers. Simulation
experiments carried out with an ARAP (As Rigid As Possible)
deformation model provide satisfactory results.

I. INTRODUCTION

Producing desired deformations in objects with the use
of robotic manipulators is a challenge that can bring many
advantages for automated industrial manufacturing, medical
and domestic applications, among others. There is a large
variety of deformable objects which can be classified into
categories in terms of a broad range of characteristics.
Similarly, the deforming actions performed on objects and
the control strategies used for that purpose can be categorised
using several criteria. Surveys such as [1] and [2] help
with formalising an already wide-ranging problem. In [1], a
deformable object classification regarding robot manipulation
is proposed. Using a mixed criteria (physical and shape
based), objects are classified into cloth-like, linear, planar
and solid objects. The tasks that can be performed on
each type of objects are also categorised, namely: tying
knots (for linear objects), folding (for cloth-like objects and
planar objects), hanging, splitting, cutting, etc. Our proposal
focuses on the shape control task which, according to [1],
concerns the large-strain object group (i.e. objects with a
low Young's modulus). As for shape control, proposals vary
significantly depending on the object type. However, they
can be generally classified with respect to several common
aspects. With regard to the deformation model, proposals
can be model-based (discrete, continuous, learned, etc) or
model-free. Another important general classification refers to
the scale at which deformations occur, ranging from small
and local to large and global deformations. The shape state
estimation can be discrete or continuous (parametric) and
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the shape estimation process can be performed with vision
sensors, force sensors or the combination of both.

A. Related work

Proposals like [3] achieve local deformation shape control
using several manipulators on planar objects. They use a
discrete network of mass-spring-damper system along with
a curve parametrisation in order to model the object and a
dynamic energy-based control law. They achieve satisfactory
simulation results and, since the error is only defined for the
actuated points, a better convergence to the desired shape is
accomplished as the number of available grippers increases.
Combining shape control with deformable object transport,
[4] introduces a consensus-based deformation model applied
to broad flexible objects that require a large number of
grippers in order to be manipulated. Tackling large isometric
deformations on planar objects, [5] uses a Shape-from-
Template (SfT) based algorithm and achieves proper perfor-
mance on real experiments with monocular-based perception.
Navarro-Alarcon et al. present diverse approaches such as [6]
and [7]. In [6] the physical properties of the object model are
presumed to be unknown and, thus, an adaptive deformation
model is proposed. The method performs satisfactorily with
3D objects in real experiments. Another interesting proposal
is [7], where the 2D object shape representation is based on a
truncated Fourier series. The approach estimates deformation
parameters to approximate the deformation Jacobian matrix.
Real and simulated experiments with two grippers (one active
and one passive) validate the method. Zhu et al. propose
a shape control strategy based on an interaction matrix
estimation by applying PCA (Principal Component Analysis)
to the shape's 2D contour points [8]. The method is validated
with simulation and real experiments using one active gripper
and a passive element of the scene. In [9] they introduce,
and validate with real experiments, a dual-arm flexible cable
manipulation method that makes use of a Fourier series
parametrisation. Hu et al. introduce in [10] a 3D deformable
object servo control based on a GPR (Gaussian Process
Regression) online learned object model. The method in
[10] is overcome in [11], which combines FPFH (Fast Point
Feature Histograms) and PCA in order to encode the state of
the object. They achieve proper experimental results using a
DNN-based (Deep Neural Networks) data-driven controller.

B. Shape control strategy proposal

Our proposal tackles the shape control problem for large-
strain deformable objects with the use of a reduced number of
grippers. We introduce multi-scale Laplacian surfaces com-
bined with FMM (Fast Marching Method) for texture-less
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deformable object contour matching. This formulation allows
to perform a non-homogeneous elastic matching, which is
an important aspect for accurately relating two deforma-
tion states. The multi-scale analysis allows prioritising the
main dimensions of the object and still discriminate, given
evenness in larger dimensions, the differences in smaller
regions. In contrast to classic elastic 1D curvature matching,
Laplacian coordinates generalise the average curvature of the
contour points in three dimensions. Provided a Laplacian-
based matching between current and target shapes, we design
a control law based on the minimisation of a linearly precise
smoothness energy function. This energy function is defined
using the previously computed point-matching information.
We do not rely on texture and generalise contour analysis to
three dimensions. The method offers a model-free approach
with no dependence on learning or parameter initialisation.
Furthermore, although seeking applications with a reason-
ably reduced number of robotic grippers, this number is
not restricted within the method. We perform satisfactory
simulation tests using the As Rigid As Possible (ARAP)
deformation model [12]. In the tests, an RGB-D camera
sensor is also simulated to make the object surface data
points resemble more realistic and noisy conditions.

II. PROBLEM FORMULATION

Shape control solves the problem of bringing a deformable
object to a deformation state so that it achieves a desired
shape. In this proposal we focus on large-strain objects,
which tend to behave poorly when manipulated with a
large number of grippers due to their high local rigidity.
Seeking generality, we consider the object to be texture-less
so fiducial markers or patterns are not required. The input
information is assumed to be provided by a depth sensing
device such as an RGB-D camera.

A. Problem setup

The object's visible surface can be segmented as a 3D
surface Θ (see Fig. 1), perceived at the sensor's resolution. In
our problem formulation we assume that γg ∈ Γ = {γg, g =
1, ...,G} grippers can be placed around the contour ∂Θ of
Θ. The goal is to define a series of control actions such
that ∂Θ resembles the target object contour ∂Θ̄. Since we
do not rely on texture information, our method is based on
the discretised contour points of ∂Θ and ∂Θ̄. The discrete
current and target shape contour points are vn ∈ V =
{vn, n = 1, . . . , N} and v̄p ∈ V̄ = {v̄p, p = 1, . . . , P}
respectively. Each current and target contour point defines a
local reference Tnw, T̄pw ∈ R4×4 with respect to the world
global reference frame. The local references axis of each
point vn are defined as (xn, yn, zn), with xn the contour's
tangent vector at point vn; yn the locally normal surface
vector at vn; and zn orthonormal to xn and yn.

The current contour nodes define graphs Gλ = (V,Eλ)
with vertices, vn ∈ V . Graphs' edges Eλ = {eλm, m =
1, . . . ,Mλ} link nodes V lying within a topological neigh-
bouring scale sλ ∈ S = {sλ, λ = 1, . . . ,Λ}, where sλ

defines the neighbouring radius along ∂Θ. Therefore, for

Fig. 1: Problem set-up. Current and target shape contour
points (vn, v̄p) extracted from contours ∂Θ and ∂Θ̄ respec-
tively. The object is grabbed by G grippers at γg points.
Affine transforms Tnw and T̄pw define each of the contours
discrete points' vn and v̄p local references.

 action  

FMMtarget Procrustes control

contour extraction

Fig. 2: Control scheme. For each iteration current contour
points vn are extracted from the RGB-D information. An
FMM Laplacian-based elastic matching is performed be-
tween target contour points v̄p and vn. Matched target points
v̄n undergo a rigid Procrustes transform in order to minimise
matching nodes distances. Using the matching information,
the control strategy generates an action ug for the grippers.

each value of λ, a new graph with the same nodes V , but with
a different set of edges Eλ, is obtained. Analogously, target
contour points define graphs Ḡλ = (V̄ , Ēλ) with vertices,
v̄p ∈ V̄ and edges Ēλ = {ēλq , q = 1, . . . , Qλ}.

B. Method's general overview

The general control scheme is represented in Fig. 2. The
current contour points vn may be obtained from RGB-D
images using an α-shape contour extraction method. We
perform an FMM-based elastic contour matching between V
and V̄ . Using the contour matches, a Procrustes transform
is applied to the target shape in order to minimise the rigid
transform error between current contour points vn and their
matched target points v̄n [13]. We define our control strategy
using the contour matches and the transforms Tnw and T̄nw.
Being T̄nw the transforms of the Procrustes-updated matched
target points v̄n. A single integrator model defines gripper
dynamics as γ̇g = ug = (ug,x, ug,y, ug,z), being γ̇g the
gripper's velocity and ug ∈ R3 its control input.



Fig. 3: Laplacian surfaces Ωy and Ω̄y for neighbouring scales
sλ. Ωy corresponds to a bar-shaped (red) contour and Ω̄y to
a “U” shaped contour (blue).

III. LAPLACIAN-BASED FMM FOR CONTOUR MATCHING

Making use of graphs Gλ and Ḡλ we propose a set of
multi-scale Laplacian surfaces. These surfaces are used in
a Fast Marching Method (FMM) optimisation in order to
obtain an elastic contour matching between vn and v̄p. As a
result, we obtain a new set of target contour points V̄match =
{v̄n, n = 1, . . . , N} that become a match for each of the
current contour points vn.

A. Multi-scale Laplacian surfaces

The random walk Laplacian operator for a given graph G
is defined by the positive semi-definite matrix:

L = IN − D−1A, (1)

where D ∈ RN×N is the node degree diagonal matrix
and A ∈ RN×N the adjacency matrix of graph G. Matrix
IN ∈ RN×N is the identity matrix. This Laplacian operator
is computed for each of the current and target contour graphs
Gλ and Ḡλ at every scale λ obtaining: Lλ ∈ RN×N and
L̄λ ∈ RP×P . Multiplying the random walk Laplacian at
scale λ by the vn nodes we obtain a set of N Laplacian
coordinate vectors lλn:

Lλ = LλV, (2)

with Lλ ∈ RN×3. Matrix V ∈ RN×3 is obtained by stacking
the vn nodes. Using Tnw we obtain the Laplacian vectors in
local reference, with local components: lλn,x, lλn,y and lλn,z .
We define a Laplacian discrete surface Ω ∈ RN×Λ across
scales sλ for a given local component x as Ωx =

[
lλn,x
]

with columns λ = 1, . . . ,Λ and rows n = 1, . . . , N . For
the current shape contour we compute Ωx,Ωy and Ωz .
Analogously, the local coordinates of the target contour
Laplacian vectors l̄λp are obtained: l̄λp,x, l̄λp,y and l̄λp,z along
with the target Laplacian surfaces Ω̄ ∈ RP×Λ, obtaining
Ω̄x, Ω̄y and Ω̄z . In Fig. 3, two Laplacian surfaces Ωy and
Ω̄y can be visualised.

B. Laplacian-based FMM for contour matching

The Fast Marching Method (FMM) [14] solves the Eikonal
equation∣∣∇T (θ, θ̄)

∣∣F (θ, θ̄) = 1, θ ∈ ∂Θ, θ̄ ∈ ∂Θ̄, (3)

which is typically used to model the propagation of a surface
front moving with a normal speed F (θ, θ̄) and crossing a

point (θ, θ̄) with a time cost of T (θ, θ̄). T (θ, θ̄) can be seen
as a cost function in which the cost of passing through point
(θ, θ̄) translates in more travel time for higher T (θ, θ̄) values.
The FMM is widely used nowadays in diverse optimisation
problems and computer vision applications as it allows solv-
ing the fastest route of a propagation front and thus, finding
the shortest path given a speed function. Contour matching
can be performed through FMM by solving the front prop-
agation along the similarity surface of two contours. FMM
has been used to perform curvature-based contour matching
between discrete curves with sub-resolution accuracy [15].
We propose an FMM contour matching approach generalis-
ing curvature to three dimensions and multi-scale analysis
by means of Laplacian surfaces Ω as our descriptors.

We define a discrete surface Fx ∈ RN×P as similarity
matrix for a given local component x:

Fx(n, p) =

Λ∑
λ=1

(∣∣Ω̄x(p, λ)− Ωx(n, λ)
∣∣+ β

)−1
, (4)

where β > 0, which implies Fx(n, p) > 0. Once Fx, and
similarly Fy and Fz , are obtained we compute F as:

F(n, p) = ‖(Fx(n, p),Fy(n, p),Fz(n, p))‖2 . (5)

With F(n, p) > 0. Note that F defines a discrete speed
function surface in which row indices represent current
contour points and column indices represent target contour
points. Thus, values of F correlate current and target local
Laplacian vector components. We perform the Multi Stencil
Fast Marching Method [16] with F as our input speed surface
and obtain the discrete cost function T. The gradient descent
path P from T(N,P ) to T(1, 1) defines the matching (Fig. 4).
Interpolating the current contour points vn ∈ V in path P,
the target contour matched nodes v̄n ∈ V̄match are obtained.

Note that ∂Θ and ∂Θ̄ are closed contours and thus an
initial matching point must be defined. The initial matching
point is obtained, as suggested in [15], by stacking F twice
on each dimension: F̂ =

[
(1, 1)T , (1, 1)T

]
⊗ F, with ⊗ the

Kronecker product. F̂ is used to generate T̂, in which the
gradient descent's end-up point converges to the initial match.
Once the initial match is obtained, F is shifted accordingly to
bring the initial match coordinates to the first element F(1, 1)
and the descent path P along T is recomputed.

In order to minimise the distance between the set of
current nodes V and the set of target nodes V̄ , a Procrustes
rigid transform [13] is performed before generating the
control action. The inputs for Procrustes are the current
contour set of nodes V and their corresponding nodes on
the target contour V̄match.

IV. CONTROL STRATEGY DEFINITION

Our proposal for the control strategy is based on a generic
quadratic mesh deformation energy function. This kind of
function is used in the field of computer graphics for solving
high resolution mesh deformations with the position change
of a few handle points as an input. For this purpose, works
such as [17] propose methods to obtain deformation sub-
spaces that allow obtaining a linearly precise point mapping



Fig. 4: Visualisation of matrices F. Below them, their corre-
sponding T matrix is represented with the gradient descent
path P (red line). On the left, F compares the Laplacian
surfaces Ω and Ω̄ whose y components are shown in Fig. 3.
On the right, the comparison of a more advanced state of the
shape control process in which a bar-shaped object begins to
acquire a “U” shape. This translates in larger values along
the F's diagonal and a more prominent valley in T.

that preserves local features. Our proposal makes use of
their formulation but with an opposite perspective. Instead
of solving the mapping of numerous surface points as a
function of a few handles' position, we seek to solve the
position of a few grippers already knowing the mapping
correspondences (i.e. the matching) of a considerable amount
of surface contour points. Furthermore, using a linearly
precise smoothness energy suits our goal of manipulating
large-strain and locally rigid objects where pronounced local
deformations may be problematic. We define our optimi-
sation variable X ∈ R(N+G)×3, which encloses the target
positions of the current contour nodes V and the grippers Γ.
Using X, a quadratic energy optimisation function is defined
for obtaining a solution denoted by X̄ ∈ R(N+G)×3:

X̄ = arg min
X

1

2
trace (XᵀBX) s.t. CX = JH. (6)

Where C ∈ RN×(N+G) retrieves the contour points tar-
get positions from the optimisation variable X. Matrix
J ∈ RN×4N stores the position of the current contour
nodes V in homogeneous coordinates. Matrix H ∈ R4N×3

stores ([I3, 0]Tn)ᵀ, where affine transforms Tn ∈ R4×4

are obtained as Tn = (T̄nw)−1Tnw. These transforms, Tn,
bring the current contour nodes' V local references Tnw
to their corresponding nodes' V̄match local references T̄nw.

The constraint in (6) states that the matched points V are
mapped to their homologous V̄match. B is the linearly precise
smoothness energy:

B = LᵀM−1L. (7)

We approximate the mass matrix M ∈ R(N+G)×(N+G) as
a matrix that stores on its diagonal the average distance
between a contour node vn and its neighbours. In (7), both
the Laplacian operator L and the mass matrix M are defined
according to a 2-closest-neighbours topological search within
the contour ∂Θ (this implies two neighbours per node). For
solving (6) we use the linearization proposed in [17]:

X̄ = (CᵀJ− C̄ᵀ
(C̄BC̄ᵀ

)−1C̄BCᵀJ)H, (8)

where C̄ ∈ RG×(N+G), in the fashion of C for contour
points, acts as a gripper point selector on X̄. Once X̄ is
obtained, we define the control:

U = k(C̄X̄− Γ). (9)

Matrices U and Γ are obtained by stacking ug gripper actions
and γg gripper positions respectively. Parameter k > 0 is the
proportional control gain.

A. Stability Analysis

Equations (6) and (7) define the minimisation of a discrete
approximation to a squared Laplacian integral along the
contour ∂Θ. Using B as our energy is the discrete equivalent
to solving the continuous bi-harmonic equation ∆2u = 0,
where ∆2 = ∇2∇2 and ∇2 is the square continuous Lapla-
cian operator. Given the uniform spatial distribution of the
contour points and the topological neighbouring on ∂Θ, we
assume the graph Laplacian L to converge to his continuous
homologous. This allows us to analyse our formulation as
the solution of the smooth Dirichlet problem which, in Lip-
schitz domains, is proven to have solution uniqueness [18].
Our formulation defines Dn ⊂ ∂Θ concatenated Lipschitz
domains and thus points (i.e. grippers γg) falling within
domains Dn present uniqueness of solution in X̄. Conditions
in (6) imply Dirichlet conditions on disjoint regions of ∂Θ
for the bi-harmonic equation. Note that, for each gripper
γg , Dirichlet conditions are defined by its surrounding nodes
affine transforms. Considering solution uniqueness, we can
assume C̄X̄ to be locally constant and define the Lyapunov
function:

V =

G∑
g=1

Vg, with Vg =
1

2
(C̄gX̄− Γg)(C̄gX̄− Γg)

ᵀ. (10)

Matrices sub-index g refers to the vector conformed by their
g-th row. In (10), Vg(0) = 0 for (C̄gX̄−Γg) = 0 and Vg >
0 ∀(C̄gX̄−Γg) 6= 0. Deriving (10) and substituting (9) we
obtain:

V̇g = −k(C̄gX̄− Γg)(C̄gX̄− Γg)
ᵀ. (11)

Which ensures V̇g ≤ 0 ∀(C̄gX̄−Γg) and V̇g < 0 ∀(C̄gX̄−
Γg) 6= 0 and thus local asymptotic stability in the sense of
Lyapunov.



V. EXPERIMENTAL RESULTS IN SIMULATION

We have performed several simulations using the As Rigid
As Possible (ARAP) deformation model as it fits our purpose
of simulating large-strain objects [12]. Figure 5 (and video
attachment) show seven experiments of different character-
istics. On the first column: the initial state of the deformable
object (red triangulation) and the gripper positions γg (black
dots with red crosses overlapped) are displayed. The current
and the target contours (vn and v̄p) (obtained with a simu-
lated RGB-D camera) are displayed as well in red and blue
respectively. Thin grey lines between the contours represent
the matching obtained by using the proposed Laplacian
based Fast Marching Method. The second column shows
the same elements after the presented shape control process
converges. Third column displays the relative boundary error
distribution on each iteration. The boundary error for a
node vn is computed as the Euclidean distance between
node vn and its assigned target contour node v̄n. On the
fourth column, the relative object deformation distribution
is represented as it varies along iterations. This deformation
metric is obtained by computing the variation in length of
the simulation mesh edges with respect to their initial length.
All the tests have been performed with control gain k = 0.2
and the initial gripper positions are presumed to be known.

The first three experiments perform deformations on a
more global scale. Note how experiments 1 (bending) and 3
(unfolding) are opposites and, although their boundary error
convergence is similar, their object deformation distributions
are complementary: predominant negative values (compres-
sion) for the bending process and positive values (distension)
for the unfolding process. The second experiment has the
same initial set up as the first one but one of the grip-
pers (green square) is kept fixed. Although this affects the
method's performance, it converges to an adequate solution.
The remaining three experiments gradually represent cases of
deformation on more local scales. In experiment 4 (triangles),
the rigid nature of ARAP becomes clear and the shape
control method struggles at reducing the boundary error.
Note how most edges suffer large compression on the de-
formation graph. In opposition to experiment 4, experiment
5 (star) shows large distension on edges. The boundary
error is reduced yet several points fall far away the error
distribution's median. These points correspond to the star tips
which, in the absence of grippers, cannot be controlled. The
sixth experiment (bone) shows an isolated local deformation.
This is reflected on the boundary error at the first iteration:
the boundary error distribution groups around a low median
value, but several contour points lie well apart. Similarly,
the object's deformation values are generally low. Just a few
locally affected points suffer compression or distension. Last
row in Figure 5 shows a 3D deformation experiment in which
a bar is bent along x and z axis. For ease of visualisation,
the simulation mesh colour map represents the z coordinate
values. Note on its relative deformation graph how several
edges undergo large deformations during the shape control
process but approach their initial values on the final shape.

VI. CONCLUSIONS
We have developed a shape control method for large-

strain deformable object manipulation with few grippers. The
method involves an elastic contour matching performed with
a novel multi-scale Laplacian surface descriptor combined
with FMM optimisation. We proposed a control strategy
based on the minimisation of the Laplacian deformation
energy. Local convergence analysis and simulations validate
our proposal. The non-reliance on object texture, a three-
dimensional analysis, the lack of dependence on both model
and parameters and the absence of a restricted number of
grippers are some of the advantages of our proposal.
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[17] Y. Wang, A. Jacobson, J. Barbič, and L. Kavan. Linear subspace design
for real-time shape deformation. ACM Transactions on Graphics,
34(4):1–11, 2015.

[18] C.E. Lawrence. Partial Differential Equations. American Mathemati-
cal Society, Providence, Rhode Island, 1998.



50 100 150 200 250

50

100

150

200

100 150 200

60

80

100

120

140

160

180 1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 10

Iteration

-40

-30

-20

-10

0

10

20

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

50 100 150 200 250

50

100

150

200

50 100 150

60

80

100

120

140

160

180
1 2 3 4 5 6 7 8 9 10 11 12

Iteration

0

50

100

150

200

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

-40

-20

0

20

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

50 100 150 200 250

50

100

150

200

50 100 150 200 250

100

150

200

1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 10

Iteration

-10

0

10

20

30

40

50

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

0 100 200

50

100

150

200

250

0 50 100 150 200 250

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 10

Iteration

-60

-50

-40

-30

-20

-10

0

10

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

0 50 100 150 200 250

50

100

150

200

250

0 100 200 300

0

50

100

150

200

250

300 1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

250

300

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 10

Iteration

-20

0

20

40

60

80

100

120

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

0 100 200 300

0

50

100

150

200

0 100 200 300

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

250

300

350

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 10

Iteration

-30

-20

-10

0

10

20

30

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

1 2 3 4 5 6 7 8 9 1011121314151617181920

Iteration

0

50

100

150

200

250

B
o
u
n
d
a
ry

 e
rr

o
r 

(%
)

1 2 3 4 5 6 7 8 9 1011121314151617181920

Iteration

-20

0

20

40

60

O
b
je

c
t 
d
e
fo

rm
a
ti
o
n
 (

%
)

Fig. 5: Results of 7 simulations. See section V for a detailed explanation.


