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Robotic motion coordination based on
a geometric deformation measure

Miguel Aranda, Jose Sanchez, Juan Antonio Corrales Ramon and Youcef Mezouar

Abstract—This article describes a novel approach to achieve
motion coordination in a multirobot system based on the concept
of deformation. Our main novel contribution is to link these two
elements (namely, coordination and deformation). In particular,
the core idea of our approach is that the robots’ motions minimize
a global measure of the deformation of their positions relative
to a prescribed shape. Based on this idea we propose a linear
shape controller, that also incorporates a term modeling anaffine
deformation. We show that the affine term is particularly useful
when the deformation to be controlled is large. We also propose
controls for the other variables (centroid, rotation, size) that
define the geometric configuration of the team. Importantly,these
additional controls are completely decoupled from the shape
control. The overall approach is simple and robust, and it creates
closely coordinated robot motions. Being based on deformation, it
is useful in several scenarios involving manipulation tasks: e.g.,
handling of a highly deformable object, control of an object’s
shape, or regulation of the shape formed by the fingertips of a
robotic hand. We present simulation and experimental results to
validate the proposed approach.

Index Terms—Multirobot systems, motion coordination, coop-
erative manipulation, robot control.

I. I NTRODUCTION

A. Overall context

Recent technological advances in artificial intelligence (AI)
are bringing about higher capabilities to solve problems of
societal interest. Robotic systems are a particular manifestation
of artificial intelligence in which such intelligence becomes
embodied. Specifically, aside from being capable of processing
information, a robot also has the ability to move and act
autonomously in the world. This gives it great potential to
carry out many tasks. For high-complexity tasks, a multi-
robot system provides more advanced capabilities (coverage
of larger workspaces, handling of higher payloads, better
resilience via redundancy) than a single robot [1].

A salient topic in present-day robotics is the handling ofde-
formation. Robotics has traditionally concentrated on dealing
with rigid objects. Deformable objects, on the other hand, are
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Fig. 1. Diagram representing the proposed approach with four robots.

interesting in many applications, but it is very challenging to
perceive, model and manipulate them with robots. The recent
survey [2] details the associated challenges. Using a multirobot
system (instead of a single robot) helps to mitigate some of
these challenges, due to the higher number of resources and
of degrees of freedom provided by such a system [3]. As a
result, a problem of current interest is to develop appropriate
strategies to coordinate the motions in a multirobot systemto
address tasks that involve deformation. This is the problem
addressed in our work.

B. Contribution and method description

Our main novel contribution is to use a geometric defor-
mation measure directly as the cost function for controlling
the motion of a multirobot system. As a result, we link
coordination and deformation. To see why this link is interest-
ing, consider a scenario where multiple robots manipulate a
deformable object. Then:(i) coordination without considering
deformation(e.g., multirobot formation control [4]) means the
state of the team is controlled appropriately but, as defor-
mation information is disregarded, the chances of damaging
the object during the motion increase. On the other hand,
(ii) deformation without considering coordination(e.g., object
deformation control) means each robot controls individually
the deformation, but the lack of explicit coordination between
the robots’ efforts implies their actions are suboptimal and
more likely to fall into local minima [5].

A block diagram of our approach appears in Fig. 1. The
deformation measure we use is defined as the difference
in shape between the current and the desired set of robot
positions. The core goal of our approach is to control the
robots towards maintaining the desired shape. To this end, we
propose ashape controller, consisting of two control terms:
a pure deformation term, and an affine deformation term.
The pure deformation term makes the robots minimize the
deformation measure, by moving them towards the optimal



 

 

Desired shape (Cb)
Current positions (Qb)
Optimal configuration with
desired shape (H·Cb)
Optimal configuration with
affine deformation (G·Cb)

Fig. 2. Illustration of shapes used by our shape controller.For every one
of the four shapes shown, the robot identities are 1-2-3-4, counted clockwise
starting from the robot in top-right. Notice that the affine deformation is a
stretching and shearing of the desired shape.

configuration with the desired shape. To explain the affine
term, we refer to the concept ofdeformation modes(see, e.g.,
[6]). These modes encode ways in which real objects deform.
Specifically, an affine deformation represents stretch and shear
deformation modes. Figure 2 illustrates the action of the affine
deformation. The specific action performed by the affine term
is to move the robots towards the optimal configuration with
affine deformation.

Therefore, the shape controller moves the team towards the
desired shape (thanks to the pure deformation term) while
maintaining plausible stretch and shear deformations along the
way (thanks to the affine deformation term), instead of other
unpredictable deformations which might damage the object
being manipulated. The affine term is particularly useful when
the deformation is large: in that case, it ensures that the shape
transition towards the desired shape is done while respecting
plausible deformations. In effect, the shape controller regu-
lates the team shape by controlling the deformation measure
variable. Aside from this, our approach also allows us to
control the team’s absolute state in the workspace: we do so
by regulating three further variables: centroid, rotation, and
size. Altogether, this gives four controlled variables. Wecall
the approach we propose to control all of them afull team
controller. Importantly, this full team controller consists of
fully decoupledcontrollers for the four variables. By decoupled
we mean that we can control the value of each of the
variables without modifying the values of the others. This
has obvious advantages as it enables a conflict-free and very
flexible control design. Additional advantages of our control
approach are that it requires few resources, and it is robust
to perturbation (i.e., non-ideal motions). We focus our study
on the case where the robot positions lie in 2D, and we also
show the application of our approach in 3D.

Our contribution is relevant both theoretically and practi-
cally. Theoretically, our approach represents a new perspective
relative to common formation control works, and we provide
thorough formal guarantees of the performance. Such guar-
antees are not usual in, e.g., AI approaches based on neural
networks. Practically, we identify several specific application
scenarios where our approach can be directly useful. We
discuss these scenarios next.

C. Example application scenarios

We identify three example target scenarios of multirobot
manipulation of deformable objects:(S1) Manipulation of
highly deformable objects, e.g., transport of fabrics [7],[8],
or handling of a belt-like or a planar rubber object [9]. In these
tasks, controlling the deformation of the robot positions can
avoid damaging the object during reshaping and resizing (e.g.,
stretching).(S2) Manipulation with many robots [10] which
are, e.g., deployed around the contour of a deformable object.
Here the object’s shape is determined directly by the robot
team’s shape, which our method can control suitably.(S3)
Preservation of the shape formed by the fingertips during
in-hand manipulation [11], to, e.g., maintain a stable object
grasp or exert a given deformation. In these scenarios, the
main usefulness of our approach is that it still allows one to
guide the motions with a concept of deformation if information
of contact forces or the object’s shape is not available. The
experimental evaluation we present illustrates these scenarios
and the method’s robustness to perturbation.

D. Comparison with preliminary paper

A preliminary version of the method we propose was
presented in the paper [12]. Here, we extend that paper
substantially. The following contents are new relative to [12]:
(i) the affine control term,(ii) the decoupled controllers for all
variables,(iii) a reformulation of the controller in a compact
matrix form that facilitates interpretation and analysis,(iv)
an extensive experimental validation which includes diverse
scenarios of application, comparisons with methods in the
literature and experiments with a real robotic hand, and(v)
a discussion of the implementation of the approach in 3D.

E. Outline of the article

The contents of this article are structured as follows. In
Section II we review the related work. Section III presents the
definition of the problem addressed. In Section IV we describe
the proposed shape controller. In Section V we describe in
detail the full controller we propose, and discuss further the
system’s design. Section VI presents our experimental results.
In Section VII we provide a concluding discussion.

II. RELATED WORK

A. Multirobot manipulation of deformable objects

Manipulation of deformable objects with a multirobot sys-
tem is an increasingly popular topic [3]. In particular, recent
works have addressed the transport of highly deformable
objects with a team of robots [7], [8]. These works exploit
distance constraints but do not use a global concept of
deformation, as we propose here. In [13], [14], an aerial
robot team is controlled using a deformation model of the
specific payload –a flexible ring and a fabric, respectively–the
team transports; in contrast, we give a general deformation-
based coordination framework, and provide formal analysis
of it. A different task with deformable objects is actively
controlling the object’s shape/deformation (i.e.,deformation
control). This typically requires multiple robots. Several works



exist, with robots moving in 2D [5], [10], [15] and 3D [9], [11],
[16], [17] workspaces. Generally they do not use a specific
mechanism of coordination among robots; the coordination
emerges implicitly from the collective task. Although herewe
do not address the precise control of the shape of an object,
the proposed approach can be helpful in these tasks, especially
when the capability to sense the shape of the object is limited.
This is because we coordinate the robots based explicitly
on minimizing deformation, which can avoid damaging the
object. For this purpose we use global information of the
team. What this means is the control law for each robot is
computed using the relative positions ofall the robots. The use
of global information is known to facilitate tightly coordinated
multirobot motions [18]–[20]; we note that such tight coor-
dination is particularly critical in collaborative manipulation
scenarios as the contact with an object poses additional risks
and constraints.

B. Formation control

Perception, manipulation or navigation tasks that are funda-
mental in a range of key applications can be carried out by a
team of multiple robots moving in a suitably coordinated way
[4], [21]. The problem we address here (namely, keeping the
multirobot team close to a prescribed geometric configuration)
is often tackled usingformation control, with well-established
existing solutions based on controlling, e.g., relative positions
[18], [22]–[25], distances [26]–[28], or angles/bearings[29],
[30]. The problem we address features prominently, e.g.,
in works dealing with multi-robot transport of (quasi-)rigid
objects; in these, the control is guided by the measured robot-
object forces [31], and in some cases [20], [32], [33] formation
control is used. In contrast with standard formation control
approaches, typically based on pairwise robot interactions, we
approach the addressed coordination problem using a measure
of team deformation. This creates closely coordinated motions
and adapts well to scenarios of deformable object manipula-
tion, because in these deformation is a directly meaningful
concept.

Since we control not just the shape but also the absolute
configuration of the team, our work is closely connected with
the problem offormation maneuvering. The method proposed
in [22] addresses this problem and takes inertia into account.
In particular, this method employs passive decomposition to
decouple the dynamics of the team’s shape from the dynamics
of its centroid. In [27] distance mismatches are exploited to
control the non-shape formation parameters (i.e., centroid, ro-
tation and size) except the size one. Predefined maneuvers for
formation tracking are proposed in [34] while other approaches
use leader robots [35], [36], without focus on decoupling. Our
approach differs in that we control all non-shape variables
(not just some of them), do so in a decoupled manner, and
our shape control strategy is explicitly based on deformation.

C. Robotics/AI and control systems engineering

Finally, it is interesting to position our article in a broader
context within the systems engineering literature: doing so
can help to find useful interdisciplinary connections, and to

enlarge the scope of our work. As said above, the multirobot
system we consider is an embodied AI system whose shape
we control. It can therefore be considered a deformable robotic
system. This fact connects our work with the field of soft
robotics [37], which is growing rapidly in recent years. In
particular, since we propose a control loop based on deforma-
tion, our work can fit the definition of soft controller proposed
in [38]. Furthermore, our deformation-based formulation can
have interest in other feedback control problems beyond the
specific robotic problem we treat, as applications of feedback
control are wide-ranging (e.g., from insulin delivery [39]to
smart grid load management [40]).

III. PROBLEM DEFINITION

A. Preliminaries

IN denotes theN×N identity matrix.1N notates a column
vector ofN ones. We defineS = [(0, 1)T , (−1, 0)T ], i.e., for
a matrix A ∈ R

2×N , SA is a counterclockwise rotation of
π/2 radians of the column vectors ofA. Also, we notate as
A+ = AT (AAT )−1 the N × 2 pseudoinverse ofA, which
satisfiesAA+ = I2. We define a centering matrixKb =
IN − 1

N
1N1T

N , which is symmetric (KT
b = Kb), idempotent

(K2
b = Kb), and satisfiesKb1N = 0. || · ||, || · ||F denote

Euclidean and Frobenius norm, respectively.tr(·) denotes the
trace operator. We generally do not notate time dependence.
All proofs are given in the Appendix.

B. Problem statement

Consider a team ofN robots inR2. The problem we address
is to bring the robot positions towards a given configuration
in the workspace while suitably controlling their shape. By
shapewe refer to the information about the set of positions
that is left after translation, rotation, and scaling have been
disregarded from consideration [41]. Accordingly, we use the
termnon-shape variablesto refer to centroid, rotation and size
of the set. The considered setup is illustrated in Fig. 1.

We define, then, a prescribed desired shape, encoded as a
positionci ∈ R

2 for each roboti. Moreover the current robot
position at timet is denoted asqi(t) ∈ R

2. Both ci andqi

are expressed in the system’s world frame. We represent the
full sets of positions by stacking these column vectors, as:
Q = [q1,q2, ...,qN ], C = [c1, c2, ..., cN ]. Q andC are of
size2×N . We define the centroid of the current positions as
q0 = 1

N
Q · 1N . In stacked matrix form this isQ0 = q01

T
N .

AnalogouslyC0 = 1
N
C · 1N1T

N . We then define the matrices
of positions with zero centroid as:

Qb = Q−Q0 = QKb, Cb = C−C0 = CKb. (1)

In addition, we consider a desired absolute configuration,QT

∈ R
2×N . We parameterize it as follows:

QT = sdRd(θd)Cb +Q0d, (2)

with Q0d = q0d1
T
N ∈ R

2×N , Rd(θd) ∈ SO(2) andsd ∈ R>0.
Notice thatQT has the desired shape, since it consists in a
rotation and uniform scaling ofCb, plus a translation. The non-
shape variables ofQT are encoded byq0d ∈ R

2 (centroid),
Rd(θd) (rotation) andsd (size).



We consider a single-integrator motion model:q̇i = ui,
whereui ∈ R

2 is robot i’s control input. Thus:Q̇ = U,
whereU = [u1,u2, ...,uN ] is the team’s control input. We
name our control laws usingU with identifying subscripts.
Control goals: The desired shape is achieved ifQ is equal
to C up to a rotation, uniform scaling, and translation. Using
Qb andCb, the translation element can be removed. Then, we
formally define ourshape control goalby the condition:

Qb = sR(θ)Cb, (3)

for a generics ∈ R≥0 and a genericR(θ) ∈ SO(2).
In addition to the shape control goal (3), we also define our

full control goal , by the following condition:

Q = QT . (4)

An additional specification in our problem definition is that
the multirobot control system to be designed needs to be
feasible in terms of resource consumption. Moreover, it is
desirable for the system to satisfy other nonfunctional criteria
such as robustness to perturbation.

IV. SHAPE CONTROLLER

Our strategy to achieve the shape control goal (3) is based
on the cost function:

γ =
1

2
||Qb −HCb||

2
F . (5)

H ∈ R
2×2 has the structure of a similarity, i.e.,:

H =

[

h1 −h2

h2 h1

]

, (6)

and the values of its components are:

h1 =
tr(QbC

T
b )

cs
, h2 =

tr(Qb(SCb)
T )

cs
, (7)

with cs = tr(CbC
T
b ) = ||Cb||

2
F . Any real transformation

having the structure (6) performs uniform scaling and rotation
when acting onCb. Within the set of such transformations,H

is the one that aligns with least-squares errorCb with Qb; i.e.,
H is the solution of a Procrustes optimal alignment problem,
found by differentiation from (5). Note that we can express
H = shRh, with sh =

√

h2
1 + h2

2 = tr(QT
b RhCb)/cs being

a scaling factor andRh(θh) a counterclockwise rotation by
angleθh = atan2(h2, h1). Note that, as will be further ex-
plained in Remark 1, we disregard the casesh = h1 = h2 = 0.
We do so because(i) this case corresponds to configurations
with zero measure, i.e., not relevant in practice since an
infinitesimal perturbation takes the system out of them and
(ii) we will show how to specifically controlsh, which means
this variable cannot go to zero.

One notices directly in (5) thatγ is a certain measure of
error between the current{qi} and desired{ci} positions.
SinceH is optimal, γ abstracts out the non-shape parameters,
and hence characterizes the differencein shapebetween the
two sets. From the viewpoint of the set{ci}, this difference
expresses how much the set{qi} is deformed relative to it.
Therefore,γ measures the deformation of the current robot

positions with respect to their desired shape. Note in the next
lemma thatγ captures exactly our shape control goal.

Lemma 1:(3) is satisfied if and only ifγ = 0. ⋄
We compute next the gradient ofγ with respect to the robot
positions. Note that the gradient ofγ with respect toH is
zero, asH is a minimizer ofγ. Hence:

∇Qγ = (Qb −HCb)K
T
b = Qb −HCb. (8)

Pure deformation control term: We define a control term
for Q as the negative gradient ofγ. Using (8):

UH = −∇Qγ = HCb −Qb. (9)

With this control term the team executes, at every time instant,
the motion that optimally reduces the deformation measureγ.
We highlight that the similarityH is not constant; indeed,
H(t) is computed from the positionsQ(t).
Affine deformation control term: Using (9) to control a
large deformation, one has no control over how the shape will
evolve from initial to desired, and thus during the transition the
team may acquire shapes that do not correspond with suitable
deformations. To address this issue, we propose to augment
the controller (9) with anaffine deformation control term. This
term is based on the affine transformation of matrixC that
aligns it optimally (in least-squares sense) withQ. Finding this
transformation is a well-known problem in linear regression.
Its solution is computed by making the two centroids coincide,
and applying onCb the affine transformationG ∈ R

2×2

defined as:

G = QbC
+
b . (10)

Notice thatC+
b is aconstantmatrix (asCb is fixed). The affine

deformation control can be used for any desired geometry of
robot positions that is not a straight line (because thenCb is
not full rank). Note that the pure deformation control (9) can
be used for any nontrivial geometry ofCb.

Then, we define the affine deformation control term as:

UG = GCb −Qb. (11)

An affine transformation encodes stretch and shear (Fig. 2),
which are plausible deformation modes in which real-world
objects deform. Although we do not control the deformation of
an object, rather the deformation of the team that manipulates
it, clearly the two deformations are closely related; therefore
it is interesting to restrict the team’s deformation to these
plausible modes. This is whatUG does, as it continuously
moves the team towards the shape (GCb) that corresponds
with the optimal affine deformation of the desired one.
Shape controller: We propose, based on (9) and (11), the
following controller aimed at fulfilling (3):

Uγ = αHUH + αGUG, (12)

whereαH > 0 andαG ≥ 0 are control weights. These weights
can be chosen adaptively; a largerαG can be especially useful
when the deformation is large, while a largerαH can increase
convergence rate. A notable property of the shape controller
(12) is that it is alinear controller ofQ; linear control has
well-known advantages in practice. The idea of this controller



is to make the robots eventually converge to the desired shape
suitably reducingγ (due toUH ), while staying close to an
affine deformation along the way (due toUG). For this, the
two control terms need to be non-conflicting. We will show
two facts which demonstrate that this is the case. First, the
following property holds true.

Proposition 1:sh, Rh andq0 are all invariant underUγ . ⋄
Second,UG can never increaseγ. We state next a lemma that
will be used later on to show this fact.

Lemma 2:Given matricesA, B ∈ R
2×N , B being full-

rank, andHw = swRw, sw ∈ R
≥0, Rw ∈ SO(2), it holds

that:

||A−HwB||2F = ||A−MB||2F + ||MB−HwB||2F , (13)

whereM = AB+. ⋄
Notice too that as (12) depends onQb (not Q), it may be
computed with relative (not absolute) position measurements.

V. FULL TEAM CONTROLLER

Let us now address how to coordinate the robots to achieve
the full control goal (4). We define four variables that capture
the state of the team:γ, q0 θh and sh. Our control goal is
then to bringγ to 0, q0 to q0d, θh to θd, andsh to sd. To do
so, we define a set of four error variables:

γ ∈ R, e0 = q0 − q0d ∈ R
2,

eθ = θh − θd ∈ R, es = sh − sd ∈ R. (14)

We already have a controller forγ (12). We next propose
controllers for the three non-shape variables.

A. Decoupled full team control

The proposed control terms are as follows:

U0 = −α0e01
T
N , α0 > 0, (15)

Uθ = −αθeθSHCb, αθ > 0, (16)

Us = −αses(1/sh)HCb, αs > 0. (17)

Here,U0 displaces the team as a whole towards centroidq0d.
Notice thatUθ andUs are nonlinear controllers ofQ, and
that they are defined by a rotation and scaling, respectively, of
the configurationHCb. This is the destination configuration
thatQb is moving towards, as can be seen by the expression
of the pure deformation control term (9).

Remark 1: We assumesh > 0 at time zero and, for
convenience and without loss of generality,θd = 0. Note
one can always rotateCb (such rotation changes no aspect
of our coordination approach) to makeθd = 0. We define by
conventionθh(t = 0) in the range(−π, π]. Then, note that
sh(t) > 0 and θh(t) ∈ (−π, π] ∀t > 0 because, as shown
later,Us andUθ control these variables in a fully decoupled
way. These assumptions ensureθh(t) will be smooth.�
Let us call a controller for a variable (γ, q0, θh, or sh)
decoupled if it does not change the values of the other
variables. We can give our result on decoupling next.

Proposition 2:Uγ , U0, Uθ, andUs are decoupled con-
trollers for γ, q0, θh, sh respectively.⋄

We then propose the followingfull controller :

Uf = Uγ +U0 +Uθ +Us. (18)

The following is the main convergence result of this article.
Theorem 1:The full controllerUf (18) brings the team to

the target configurationQT = sdRd(θd)Cb +Q0d. Moreover
the dynamics follows an exponential decoupled decrease for
e0, eθ, andes; and, if αG = 0, also forγ. ⋄

Remark 2:We stress that what makes the decoupling possi-
ble is that we have defined a measure (γ) that capturespurely
the deformation. Important advantages of the decoupling are:
(i) It preserves the properties of the shape controllerUγ

(12), while fulfilling goal (4) with Uf (18); (ii) It can
facilitate extending the controller totime-varyingreferences
C(t), q0d(t), θd(t), sd(t), which could be tracked in a decou-
pled manner;(iii) It directly allows partial control, leaving
some parameters invariant, e.g.: rotating and resizing theteam
without translation;(iv) Desired behaviors for the variables
can be designed by appropriately selecting the weightsα;
(v) Controller convergence is guaranteed for any weightsα.
Note that [12] proposed control laws (”variants” ) that could
control either rotation or scaling while preserving the other
variable, or used a leader robot. However full decoupling was
not guaranteed (e.g.,γ could increase) and stability was not
analyzed. Here the control is fully decoupled.�

B. Alternative controls for rotation and size

Rotation and resizing of the current shape:An alternative
strategy is to rotate and resize the current team shape,Q(t).
Although this does not ensure full decoupling fromγ, it can
be effective in practice. We propose the controls:

Uθq = −αθqeθSQb, αθq > 0, (19)

Usq = −αsqesQb, αsq > 0. (20)

Integrated rotation and size control: This strategy is de-
signed to regulatesimultaneouslythe rotation and size param-
eters. A motivation for this compact strategy is that it can be
implemented in both the 2D case and the 3D case (discussed
in Section V-D). We propose a control term based on reaching
a desired similarityHd = sdRd:

UHd
= αHd

(HdCb −Qb), αHd
> 0. (21)

This term is not decoupled fromγ but it gives a suitable and
intuitive way to makeH gradually transition towardsHd.

C. Inter-robot distances

A controller based on team deformation can help to maintain
suitable distances betweeneverypair of robots. Exploiting the
interesting fact thatγ and es can be controlled to converge
monotonically, we provide the following explicit bounds which
build on Prop. 3 in [12] and can be proven in a straightforward
manner using the mentioned monotonic convergence.

Proposition 3: Define e = 2
√

Nγ(t = 0); using con-
troller (18), the distancedij between robotsi and j remains
bounded,∀i, j, as: min(sh(0), sd)||ci − cj || − e ≤ dij ≤
max(sh(0), sd)||ci − cj ||+ e. ⋄



D. The 3D case

In our study we considered that the robot positions lie
on a plane. Note that this is the case in several deformable
object transport and manipulation scenarios, even in cases
where the manipulated object lies in 3D space [5], [7], [8],
[10], [14], [15]. This fact highlights the applicability ofthe
approach we proposed and studied. If robots move in 3D,
the proposed approach can still be implemented, as follows.
We can encode the positions in matricesQ (and Qb), C

(andCb), now of size3 × N . We first compute from these
matrices the optimal rotationRh ∈ SO(3). This can be
done via the well-known Kabsch algorithm that solves the
orthogonal Procrustes problem. Then, we can use this rotation
matrix to find the optimal scaling, analogously to the 2D case
(see Section IV), assh = tr(QT

b RhCb)/cs. This gives the
similarity H = shRh, with which we can implement the
pure deformation term (9). The affine deformation term can
be computed using (11), and (10). The non-shape parameters
can be controlled using (15), (17), (20), (21). The Kabsch
algorithm uses Singular Value Decomposition. It is therefore
not analytic and hence this 3D solution cannot be analyzed as
the 2D one. Still, we show in the tests in Sect. VI that the
controller implementation in 3D is functional.

E. System deployment and nonfunctional criteria

We propose a multirobot coordination method based on
global information, instead of one based on partial informa-
tion. What we mean precisely by global information is that the
proposed method uses the relative positions ofall the robots.
Our motivations for this choice are:(i) Global information
is known to be a suitable choice when tight coordination is
needed [18]–[20]; in particular, for the problem we address, a
distributed controller using partial information cannot produce
instantaneous motions optimizing deformation globally.(ii)
In manipulation tasks the number of robots is often small, so
scalability is not critical.(iii) Certain manipulation systems
are intrinsically centralized (e.g., robotic hand fingers).

After having addressed the functional aspects (i.e., the
controller design) of our system in previous sections, we
discuss several relevant nonfunctional aspects next.

Architecture: The proposed multirobot controller is not tied
to a specific architecture, and several choices are possible. We
illustrate two possible architectures in Fig. 3. A centralized
architecture with a central node (or leading robot) handling all
the data processing is more efficient and less complex overall.
It can adapt well to scenarios where the system is intrinsically
centralized. An example is a robotic hand, where the hand
controller would be the central node for the fingers (robots).
A distributed architecture, on the other hand, is more resilient
[21], [42]–[44] as each robot can take the role of leader [1].
It can be more appropriate when using mobile robots, each
having a high degree of autonomy. Note that a distributed
architecture is a suitable possible choice for our controller
because the controller does not have high requirements in
terms of data volumes and computing power.

Mission specification: It consists of the tuple{C, q0d,
θd, sd}, and the control weightsα. How this information is

Fig. 3. Possible system architectures exemplified with 4 robots. Arrows
represent communication links, where a dashed line indicates the link may or
may not be present. Left: Centralized system. Right: Distributed system.

determined will depend on the specific application scenario.
From the knowledge of the robot-object contact points, one can
link the state of the object with the positions of the robots,
and thus defineC. As examples, for a transport taskC can be
the contact positions when the object is at rest, and for laying
a cloth on a table,C can be computed from the table’s shape
and dimensions.

Sensing and communications:The robots need to know
the positions of the other robots. For this they can self-
localize (using, e.g., a GPS-like sensor) and communicate their
positions, or use other sensors (e.g., vision) to perceive the
other robots’ relative positions. The identity of the specific
robot associated to each position measurement needs to be
known too. These identities can be obtained either by sensing
or communication. Different message transmission schemes
(point-to-point, broadcast, multi-hop) are possible in the sys-
tem. Generally the data volume to be exchanged per cycle (i.e.,
the robots’ position measurements) scales linearly with the
number of robots. Additionally, in the distributed architecture,
all robots need to receive (via communications, and prior to
execution) the mission specification.

Computation: The controller (18) is very light to compute
because it is an analytical expression based on standard math-
ematical operations, and does not rely on executing iterative
algorithms or computing optimizations.

Memory: The storage needed increases linearly with the
number of robots. Large data structures are not needed as the
data volume required per robot is light (only a position vector).
The mission specification is also lightweight.

Robustness to perturbation:Coordination controllers that
follow the negative gradient of a cost function (such as our
shape controller) are robust to perturbations in the motion
directions of up to 90 degrees. This is because under such
perturbations the actual motion direction is still in the same
half-plane as the negative gradient vector, and thus that motion
is still reducing the cost function [25], [45]. We illustrate this
interesting robustness property in our experiments.

VI. EXPERIMENTS

Our goals in this section are to corroborate experimentally
our theoretical findings and to validate the usefulness of the
proposed approach. For these purposes we test the approach
in several scenarios and different conditions, which include



perturbations. As the motion model we consider is single-
integrator, the robots are simulated as point masses in Secs.
VI-A, VI-B and VI-C. This allows us to provide a general
evaluation, independent of specific underlying robot models.
Still, as indicated at the end of Sec. V-E, our approach is
robust if additional kinematic constraints cause the motion not
to follow the single-integrator model; this is illustratedin Sec.
VI-D where we apply the approach to control the fingertips
of a robotic hand (both simulated and real).

We include comparisons, mainly with formation controller
[23] which is linear (like our shape controller) and has been
used for formation preservation during manipulation in, e.g.,
[33]. We implement it assuming a full formation graph (i.e.,
every robot knows the position of all others), which is the case
considered in our work. We used Matlab, except for the tests
with the robotic hand, for which we used ROS and Python. A
video illustrating tests for the different scenarios is attached
and accessible athttps://youtu.be/WD98yZZJUuM.

A. Team coordination with large deformation

We simulated six robots moving towards a regular-
hexagonal desired configuration. We considered a large initial
deformation. This example intends to specifically illustrate the
usefulness of our affine control term: this term is particularly
important and helpful when the deformation to be controlled
is large. We choseαG = 10αH . We used controllerUf (18).
The first row of Fig. 4 shows that this controller produces a
shape transition where the robots preserve a plausible affine
deformation. In contrast, [23] lacks this control of transition.
This can produce unsuitable motions: e.g., the polygon formed
by the robot positions becomes self-intersecting (see ploton
second row, second column). This is clearly not appropriate
if the robots are transporting a deformable object (scenario
(S1)). Implementing [23] with a distributed, incomplete graph
(e.g., each robot having only two neighbors) may help to
avoid such self-intersections; however, the downside is that
the motions are less efficient and, more importantly, the team
can shrink/stretch/deform without control during its transition
to the desired shape. We also test, and illustrate in Fig. 4,
a strategy based on the nonlinear rigidity-based approach
[26]. Again, the shape transition is worse than with our
approach. Importantly, [26] is stable onlylocally, and for
large deformations it may converge to undesired equilibrium
configurations (even with a full formation graph). In contrast,
our controller is stableglobally and converges to the desired
shape from any initial condition. Finally, the last row in Fig.
4 shows the result with our method when used without the
affine term (i.e., choosingαG = 0). It can be seen that the
motions are similar to those obtained with [26]. This illustrates
the importance of using the affine term when the deformation
is large.

B. Handling an elastic object with perturbations

This example also illustrates scenario (S1). Consider an
elastic sheet and a task of transporting it or making its perime-
ter fully contain a given area. In this case:(i) The sheet’s
exact shape does not need to be controlled specifically, but one
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Fig. 4. Six-robot simulation. Left to right: Four snapshotsof team evolution
for our approach (18) withαG = 10αH (top row), [23] (second row), [26]
(third row), and our approach (18) withαG = 0 (bottom row). The robots
are shown as circles, their paths as solid black lines and thepolygon formed
by the robot positions is represented using dashed lines.

needs to control its deformation to avoid damaging it and(ii)
as the sheet is highly deformable and has very low stiffness,
its deformation is determined by the team deformation. Hence
our approach is useful as it controls the team deformation, and
does not require knowing the sheet’s shape.

To simulate the elastic sheet we implemented the well-
known approach Meshless Shape Matching (MSM) [6]. We
used controllerUf . We introduced perturbations to the model
q̇i = ui, to test robustness. Specifically we included: noise in
U (which models both sensing and actuation error), actuation
saturation (via a different maximum velocity limit for each
robot) and non-identical control gains, to model the robots
as heterogeneous. The task consisted in the team moving to
two consecutive target configurations. Figure 5 shows that
despite the strongly perturbed velocities the controller (18) can
perform the task correctly and produces a suitable evolution
of the object’s shape. Again, we compare with [23], run under
the same perturbations as our approach. [23] produced larger
errors in some variables and more contorted paths.

To illustrate the object’s behavior in the tests, we define
γobj as the analog ofγ but defined for the positions of the
set of nodes representing the object’s shape (instead of for
the positions of the set of robots). We tested definingγobj
with the standard optimal similarity transformation, and with a
rotation (i.e., fixingsh = 1), which yielded similar results. We
ran 10 trials with varying saturation thresholds and noise,and
averaged the results. The mean value ofγobj was 56 % higher
with [23] than with our approach. Note that we discarded all
data below a certain small threshold value ofγobj , to remove
any effect of the convergence speed on these comparative
results. Moreover, the maximum value ofγobj was around
9 % higher with [23]. These results show that with our method
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Fig. 5. Four-robot simulation. Top: time evolution ofγ, ||e0||, eθ , es. Second row: snapshots of the object’s shape; left to right:initial, intermediate, first
target, intermediate, second target. Bottom, left to right: norms of robots’ velocities, robot paths from initial configuration to first target, robot paths from first
to second target. First target is marked with green dashed lines. Paths shown in red dashed lines for [23], in black solid lines for our method.
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Fig. 6. Eight-robot simulation. Left to right: Four snapshots of system
evolution. Robots as circles, object boundary as solid line, (in fourth plot)
desired positions of object particles on the boundary as darker circles.

the shape of the object being manipulated evolved in a more
uniform and efficient fashion.

C. Coordination for object shape control with many robots

We simulated eight robots manipulating an elastic, bar-
shaped object lying in 2D and simulated with MSM. First,
starting from the rest shape of the object, we moved manually
the robots so that they bent it into a desired state. Then, we ran
our controller starting from the rest shape, withC equal to the
team’s shape in the desired state. We usedUγ +U0 +UHd

.
We added motion disturbances similarly to the test in Section
VI-B. The results in Fig. 6 attest that both the team and object
deformations progressed appropriately during execution.This
example illustrates scenario(S2).

D. Robotic hand experiments

We applied our controller to coordinate the fingertip motions
of a robotic hand –scenario(S3)–. We used the anthropomor-
phic Shadow Dexterous Hand. In all tests we implemented

the controller in 3D (see Section V-D). The palm of the hand
was fixed. As a joint velocity controller was not available for
the hand we used, we employed position control. To control
the position of every fingertip, we used inverse kinematics
computed numerically via sequential quadratic programming.
Fingertip control based on inverse kinematics is also em-
ployed, e.g., in [11]. Inverse kinematics for the robotic hand
suffers from inaccuracies and oscillations. We created dead
zones in the neighborhood of the Cartesian positions sent
as commands to the fingertips: this eliminated oscillatory
motions, at the cost of increasing the steady-state positioning
error. We introduced saturation to the joint angle velocities,
to avoid sudden fast motions and large differences between
the motions of different fingers. Additionally the mechanical
structure of the hand constrains finger mobility. Our goal was
to show that the controller can still be functional in these
challenging conditions.
Simulation: Figure 7 illustrates an example, visualized in
RViz, of the fingertips moving towards a desired shape. We
usedUγ + U0 + Usq . There were noticeable steady-state
control errors but the motions remained stable. These errors
were mainly due to the dead zones we had to introduce, as
explained in the preceding paragraph. The coordination of the
team is observable by the decrease ofγ and the gradual and
steady evolution of the shape formed by the fingertips.
Tests with real robotic hand: We installed the hand on a
fixture and used a soft foam bar as an object to be manipulated.
The goal was to show operation in contact with a deformable
object further limiting finger mobility. The setup is shown in
Fig. 7 along with results from a test. We usedUγ+U0+UHd

.
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Fig. 7. Hand tests results. Top, left to right: initial, intermediate (two plots)
and final shape for a test. Desired shape is the lowest, fixed red polygon.
The commanded next fingertip positions are also shown as a changing blue
polygon. Second row, left to right: evolution ofγ, centroid and scaling errors
for a simulation test. Third row, left: test with real hand, showing initial –stars–
, final –circles– and desired –squares– fingertip positions.Fingertip paths in
solid lines. Thumb marked asT. Third row, right: experimental setup. Fourth
row, left to right: γ, centroid and scaling errors for real hand test. Bottom:
four snapshots from initial (left) to final (right) configuration with the hand
grasping and deforming the object under the action of the controller.

We verified that the controller maintained a stable behavior
around the desired shape of the fingertips. The controller
allowed the hand to grasp the deformable object, as shown
in the snapshots in Fig. 7. Therefore, the proposed approach
can control moderate displacements and is useful in this
scenario mainly due to the difficulty of perceiving the state
of the object. Still, note that we ignored aspects such as hand
structural constraints or contact kinematics [46] which are very
important especially for larger displacements.

VII. D ISCUSSION AND CONCLUSION

We have presented a new approach to control a multirobot
system in a coordinated manner based on the concept of de-
formation. We have highlighted the novelty of our formulation
and its usefulness for scenarios of interest, particularlyin
problems related with the manipulation of deformable objects.

A relevant issue to discuss is the robot-object interaction.
Our approach is geometric and does not consider object-robot
contact forces. Still, we note that(i) we take deformation into
account –geometrically– and this can help maintain suitable
contact forces when there are no force sensors, and(ii) contact
force measurements are not considered in several works on
deformable object shape control [5], [16], [17], assembly [9],
or transport [7].

Our method only controls the robots’ positions (as in, e.g.,
[9]–[11], [14], [16], [32]), and not their orientations. End-
effector orientation control can be necessary depending on
the specific type of grasp and contact to, e.g., avoid exerting
excessive torques on the object. Such orientation control can
be added to the position controller we propose.

We conclude by proposing several directions for future
work. An interesting extension is to address secondary ob-
jectives (e.g., control object shape, include contact constraints
such as friction [46]...) exploiting the gradient-based character
of the shape controller [45]. Control of higher-order dynam-
ics (e.g., double-integrator model) is practically relevant and
may be facilitated by the linearity of the shape controller.
Tracking of a dynamically changingQT can benefit from the
presented fully decoupled controls of the parameters we use
to characterize it. Finally, for higher scalability and resilience
to malfunctions, it is also of interest to execute some elements
of the proposed approach in a distributed manner relying only
on partial information and partial resources of the system.

APPENDIX

We first provide a list of expressions for the traces of
products that we will use in the analysis. These identities can
be deduced starting fromHCb = h1Cb + h2SCb, SHCb =
−h2Cb + h1SCb, and using straightforward manipulations.

tr(QbC
T
b ) = tr(HCbC

T
b ) = h1cs (22)

tr(Qb(SCb)
T ) = tr(HCb(SCb)

T ) = h2cs (23)

tr(Qb(HCb)
T ) = tr(HCb(HCb)

T ) = (h2
1 + h2

2)cs (24)

tr(Qb(SHCb)
T ) = tr(HCb(SHCb)

T ) = 0. (25)

Proof of Lemma 1: i)Supposeγ = 0. This impliesQb =
HCb, andH has the formH = shRh. Hence, (3) is satisfied.
ii) Assume now (3) holds, i.e.,Qb = sR(θ)Cb whereθ is the
angle of the rotation. Let us verify what the transformationH

(7) is for this pairQb andCb. We see thath1 =
tr(QbC

T
b )

tr(CbC
T
b
)
=

s
tr(RCbC

T
b )

tr(CbC
T
b
)

= s cos(θ), and similarlyh2 = s sin(θ). SoH =

sR, and directlyγ = 0.
Proof of Proposition 1:We will study Ḣ starting withḣ1:

ḣ1 =
1

cs

d(tr(QbC
T
b ))

dt
=

1

cs
tr(

d(QbC
T
b )

dt
). (26)



We now consider the following expression in terms of two
addends:d(QbC

T
b )/dt = dh1G + dh1H . Substituting (12):

dh1G = αG(GCb −Qb)C
T
b = αG(QbC

+
b CbC

T
b −QbC

T
b )

which is 0, asC+
b CbC

T
b = CT

b (CbC
T
b )

−1(CbC
T
b ) = CT

b ,

dh1H = αH(HCb −Qb)C
T
b = αH(HCbC

T
b −QbC

T
b ).

Therefore:ḣ1 = (αH/cs)tr(HCbC
T
b − QbC

T
b ) = 0, using

(22). One can also find in an analogous mannerḣ2 = 0.
ThereforeḢ = 0, i.e., sh and Rh do not change. Finally,
we see that the centroidq0 is not changed by the controller:

q̇0 =
1

N
Q̇ ·1N =

1

N
(αH(HCb−Qb)+αG(GCb−Qb))1N .

As by definitionCb · 1N = 0 andQb · 1N = 0, q̇0 = 0.
Proof of Lemma 2:We first develop the two sides of the

equality to be proven as:

||A||2F + s2w||B||2F − 2swtr(A
TRwB) =

||A||2F + ||MB||2F − 2tr(ATMB)+

||MB||2F + s2w||B||2F − 2swtr((MB)TRwB). (27)

We show two identities next. The first one is:

||MB||2F = tr((MB)TMB) = tr(BTB+TATMB) =

tr(BBTB+TATM) = tr(BATM) = tr(ATMB), (28)

where we used the cyclic property of the trace of a product and
BBTB+T = BBT (BBT )−TB = B due to the symmetry of
BBT . The second identity is obtained analogously:

tr((MB)TRwB) = tr(BTB+TATRwB) =

tr(BBTB+TATRw) = tr(BATRw) = tr(ATRwB). (29)

Substitution of (28) and (29) in (27) shows (27) is true.
Proof of Proposition 2:Prop. 1 showed thatUγ is decoupled

as it does not changeq0, θh, or sh. Next we showU0, Uθ, Us

are also decoupled by computing the changes they produce in
the relevant variables (γ, q0, θh, sh).
• γ decoupling. We will show U0, Uθ, Us do not change
γ. The change inγ under a given controlUp is tr((Qb −
HCb)

TUp). We evaluate this expression next replacingUp

by the different control terms.
U0. We have−α0tr(Kb(Q − HC)Te01

T
N ). Applying the

cyclic property, this is equal to−α0tr(1
T
NKb(Q−HC)Te0),

and by definition1T
NKb = 0.

Uθ. ReplacingUp by Uθ and using (25) we can see that
−αθeθ(tr(Q

T
b SHCb)− tr((HCb)

TSHCb)) = 0.
Us. ReplacingUp by Us and using (24) we can see that
−αses(1/sh)(tr(Q

T
b HCb)− tr((HCb)

THCb)) = 0.
• q0 decoupling. We will show Uθ andUs do not change
q0. For this we study the change inq0 under a given control
Up. This is q̇0 = (1/N)Up · 1N . For bothUθ andUs, this
results in a productCb · 1N , which is zero.

We will use in the next steps the changes inh1 and h2

under a controlUp, which have the expressions:

ḣ1 = (1/cs)tr(UpKbC
T
b ), (30)

ḣ2 = (1/cs)tr(UpKb(SCb)
T ). (31)

• θh decoupling. We will show U0 andUs do not change
θh. The dynamics ofθh is θ̇h = (h1ḣ2 − ḣ1h2)/s

2
h.

U0. We have ḣ1 = −(α0/cs)tr(e01
T
NKbC

T
b ), where

1T
NKb = 0. For this same reason,ḣ2 = 0, and hencėθh = 0.

Us. We haveḣ1 = −αses
shcs

tr(HCbC
T
b ) = −αsesh1

sh
(using

(22)) and ḣ2 = −αses
shcs

tr(HCb(SCb)
T ) = −αsesh2

sh
(using

(23)). We conclude thaṫθh = 0.
• sh decoupling. We will show U0 andUθ do not change
sh. The dynamics ofsh is ṡh = (ḣ1h1 + ḣ2h2)/sh.
U0. Using the same argument as for theθh decoupling above,
this control term does not changesh.
Uθ. We have ḣ1 = −(αθeθ/cs)tr(SHCbC

T
b ), and using

ST = −S, the cyclic property, and (23) giveṡh1 = αθeθh2.
On the other hand,̇h2 = −(αθeθ/cs)tr(SHCb(SCb)

T ).
Using ST = −S, S2 = −I2, the cyclic property, and (22)
gives ḣ2 = −αθeθh1. Henceṡh = 0.

Proof of Theorem 1:From Prop. 2, the evolution of each
error variable is only influenced by a single control term.
Convergence ofγ. The evolution ofγ is as follows:

γ̇ = tr((∇Qγ)TUγ) = −tr(UT
H(αHUH + αGUG))

= −2αHγ − αGtr(U
T
HUG). (32)

Here, we know directly from Lemma 2 –withA = Qb, B =
Cb, Hw = H–, that: ||UH ||2F = ||UG||

2
F + ||UH − UG||

2
F .

Since by definition||UH ||2F = ||UG||
2
F + ||UH − UG||

2
F −

2tr(UT
G(UH−UG)), it must therefore hold thattr(UT

G(UH−
UG)) = 0. Hence,tr(UT

GUH) = tr(UT
HUG) = ||UG||

2
F ≥

0. From (32), this implies thaṫγ ≤ 0, and thatγ̇ = 0 can
only happen whenγ = 0 andUG = 0. But γ = 0 implies
the robots are in the desired shape (Lemma 1), which means
UG = 0. Hence, we can state the simple condition thatγ̇ = 0
if and only if γ = 0.
sh(t) will be upper bounded for allt, since it can be fully

controlled byUs. γ is also upper bounded –by its initial value–
. As γ can be expressed asγ = (1/2)||(Q− shRhC)Kb||

2
F ,

||Q||F must be upper bounded too:||Q||F ≤ q̃ for a q̃ ∈ R.
Defining q = vec(Q) ∈ R

2N , this means that the compact
set Ω = {q s.t. ||q|| ≤ q̃} is invariant. Then, aṡγ(q) ≤ 0,
LaSalle’s invariance principle implies thatq converges to the
largest invariant set inΩ in which γ̇ = 0. As noted above,
γ̇ = 0 impliesγ = 0; hence,γ → 0 and the system converges
to the desired shape (Lemma 1). And from (32), ifαG = 0,
γ decreases exponentially, asγ̇ = −2αHγ.
Exponential decrease ofe0, eθ, es.
e0: Recall thatq0 = 1

N
Q1N . So when applyingU0 we get

ė0 = q̇0 = 1
N
U01N = −α0

N
e01

T
N1N = −α0e0.

eθ: We already found (proof of Prop. 2) that under the action
of Uθ, ḣ1 = αθeθh2 and ḣ2 = −αθeθh1. Thereforeθ̇h =
(h1ḣ2 − ḣ1h2)/s

2
h = −αθeθ. Hence,ėθ = θ̇h = −αθeθ.

es: We already found (proof of Prop. 2) that under the action
of Us, ḣ1 = −αsesh1

sh
and ḣ2 = −αsesh2

sh
. Therefore,ṡh =

(ḣ1h1 + ḣ2h2)/sh = −αses. Hence,ės = ṡh = −αses.
Therefore, all errorsγ, e0, eθ, es, are driven to zero as

t → ∞. γ = 0 implies thatQb = HCb (5). eθ = 0 and
es = 0 imply thatH = sdR(θd). And e0 = 0 impliesQ0 =
Q0d. SinceQ = Qb + Q0 (1), Q converges to the target
configurationQT = sdR(θd)Cb +Q0d.
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