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Abstract— The intelligent handling of deformable objects by
robotic manipulators has enabled the automation of various
delicate or labour-intensive tasks, but still faces many challenges
when it comes to more complex situations. In particular, the
lack of a general framework to manage deformation makes
it difficult to manipulate unknown objects, especially in the
3D case. This work aims to provide a path forward to solve
some of the challenges pertaining to the robotic manipulation
of deformable objects and integrate these solutions in a flexible
system able to manipulate various deformable objects in a task-
independent way.

I. INTRODUCTION

Deformable objects are commonplace in everyday life, and
their intelligent manipulation is a requirement for automating
many delicate or labour-intensive tasks in e.g., agriculture,
food processing, or healthcare. While multiple robotic plat-
forms and algorithms have been proposed to perform specific
tasks with such objects [1], [2], they still lack the human-like
skills and flexibility that would allow a general-purpose robot
to perform varied tasks with different deformable objects
while retaining the ability to handle the ever-present rigid
objects. Much work has been done on manipulating linear
and planar objects such as rope and cloth, but the lack of
a task-independent framework to handle deformation limits
applications when objects are not fully known a priori. This
issue is accentuated when dealing with more complex 3D
objects, when non-rigid and rigid objects are mixed up in
an application, or when dealing with objects with dissimilar
material characteristics that make them partially rigid and
partially deformable.

This paper draws upon our work on the intelligent robotic
manipulation of non-rigid objects to present a generalizable
framework for manipulating deformable objects and high-
lights some key observations and challenges to overcome.

II. OBSERVATIONS FROM PREVIOUS WORK AND
CURRENT CHALLENGES

A. Deformable Objects Sensing, Detection and Understand-
ing

Interactions with deformable objects are inherently com-
plex since it can be challenging to predict their behaviour.
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When probed, the object undergoes a change in shape and
in turn the reaction forces experienced can be nonlinear
and vary based on the inhomogeneous nature of the object.
The quality of data acquired plays a key role in obtaining
accurate and complete models, especially when a scene
contains complex or multiple occluded objects. Models built
from single-view information have achieved great results
for bounding box detection but do not support full 3D
representation due to limitations in deducing the shape and
characteristics of objects from a single viewpoint. Symmetry
based shape completion techniques work well for objects
that are made up of simple shapes, while object detection
techniques work well when the 3D objects in the scene
are known. Learning based solutions have shown very high
degrees of success when objects are known but are not as
successful when dealing with novel objects.

As a result, the object should be observed from different
perspectives to reach a more comprehensive description of
the object shape and characterize its material [3]. While
creating such models is rather complex, dynamic 3D repre-
sentations of deformable objects can be built by leveraging
the data from an optimized set of viewpoints provided by
a network of RGB-D sensors in different locations. This
includes multi-sensor systems, mobile sensors that can be
moved to obtain numerous views of the scene, as well as
systems where the manipulator provides multiple views to a
single sensor while controlling the object.

Mainly relying on single view data and in order to validate
and compare various object detection and semantic segmen-
tation algorithms, computer vision researchers have typically
conducted experiments through the use of publicly available
datasets such as ImageNet [4] or Microsoft COCO [5] using
standard metrics. Notably, the authors of these datasets do not
typically distinguish between rigid and deformable objects
in their descriptions, but rather implicitly note the difficulty
involved with detecting and segmenting both types of objects
in the context of different viewpoints, different object poses,
and as parts of a hierarchy.

Because current large-scale datasets for object recognition
do not explicitly consider the objects’ deformability, but
rather imply it through multiple poses and moveable parts,
it is challenging to apply machine learning algorithms to
identify and track non-rigid objects. This increases the de-
pendency of the initialization sequence on human interaction
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to identify objects and validate the detected shape before
performing the manipulation. Researchers would benefit
from large-scale RGB/RGB-D datasets explicitly used for
training models on deformable objects for standardization
and comparison. It is worth distinguishing two kinds of
deformable objects that could form different datasets in this
context. First, there are objects that can be broken down into
a discrete set of parts which may be annotated, such as the
Pascal VOC Person Layout dataset [6]. The second kind of
objects are those that are not discretizable in a reasonable
sense, e.g., plasticine and sponges. A greater variety of
objects is required in datasets of both categories.

Prior to the ubiquitous use of end-to-end training on
large datasets with convolutional neural networks, a popular
approach in object detection to deal with deformations in
objects makes use of deformable part models (DPM), notably
implemented by Felzenszwalb et al. [7]. In their work, a
set of learned filters conditioned on histogram of oriented
gradients (HOG) features are trained on an image pyramid,
applied at different scales at a fixed location. Displacement
of each filter is based on a set of chosen anchored part
locations and spatial priors, relative to a root for a fixed
number of parts. The model computes a displacement of the
parts relative to the anchors for each part and uses a latent
SVM formulation for classification. Notably, DPM explicitly
takes into account the alignment of the parts of the model to
form a “hypothesis of objectness”, and is agnostic to whether
the object is rigid or not. Deformable part-based models do
not require a-priori knowledge of the configuration of the
object and its deformability, and so can be used in the context
of detection of both rigid and non-rigid objects.

B. Modelling and Behaviour Prediction from Partial Obser-
vations

Modelling objects, either deformable or rigid, from a
single point of view provides a limited 2.5D representation.
This leads to significant challenges in the grasping and con-
trol stages due to the requirement of estimating 3D objects
from 2.5D data. An estimate can be made using symmetry,
object recognition or learning based techniques. Each method
provides a unique approach and may be suitable depending
on the problem. The difficulty of estimating 3D shape from
2.5D information is exacerbated once an object begins to
deform or is occluded by the manipulator. These challenges
demand novel solutions that can be applied generally across
a range of deformable and rigid objects.

The major limitation of current research is the lack
of a general-purpose deformation modelling methodology.
Physics-based models are very accurate, but not very flexible
since these are tied to a particular configuration. Strong
assumptions are necessary to support the selection of the
type of model, e.g., homogeneous composition or isotropic
materials. However, determining these conditions in advance
is very difficult in robotic environments since objects and

their properties are often unknown. In contrast, learning-
based models are capable of extracting latent properties from
data and support generalization across objects.

A particular challenge of learning-based models is the pre-
diction of long-term deformation behaviours. The collection
of a large amount of data to achieve better performance is
an option, though an expensive and dangerous one when
using robots. An interesting approach to more efficiently
solve this problem is to exploit the structure of the data
directly in the models. The use of deep learning techniques
that explicitly integrate relational constraints such as graph
neural networks demonstrates capabilities to learn long-term
dynamics of physical systems [8].

A more general problem for any modelling approach is
handling partial observations. In some cases, specific sensing
techniques can be used to augment the shape data, e.g., multi-
view sensor fusion or occlusion removal algorithms. The
physical data can be augmented by e.g., contact detection
by force and tactile sensors. But even in a sensor-rich
environment, certain properties are very difficult to capture
directly from the data. A promising approach to managing
complex deformation behaviours is the operation of the
models in latent space representations [9].

C. Grasp Optimization and Control

In our previous work on grasp selection and in-hand shape
control of deformable objects [10], we found that it was
possible to use a simplified model of the hand motion and
various heuristics to quickly identify a stable, task-optimized
grasp based solely on a visual description of the non-rigid
object to manipulate. This is especially useful for automat-
ically selecting the initial grasp on an object for which the
rigidity and other material properties are unknown. We also
observed that shape control algorithms and principles that are
effective for reshaping linear and planar deformable objects
may not be directly applicable to volumetric objects, as they
tend to show an increase in rigidity as they are compressed
and a more well-defined shape when at rest, two properties
that are not as present in e.g., ropes and cloth.

Our work in [10] also highlighted some significant chal-
lenges for the control of reshaping tasks. First and foremost,
we note that the selected grasp and performance of the con-
trol scheme are heavily dependant on the quality of the object
description, both initially and throughout the manipulation.
If the initial shape of the object is not correctly captured,
for instance due to occlusions or insufficient contrast, the
selected grasp may fail to remain stable or to optimize the
task. In terms of control, inaccuracies in the object’s contour
make it difficult to automatically quantify the quality of the
end result and to define the control error in the manipulation.

As highlighted by the significant differences between
linear, planar, and volumetric types, deformable objects have
a wide range of possible behaviours depending on their
dimensionality, rigidity, and whether they are elastic, plastic,
or somewhere in between [3]. This variety of possible
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behaviours presents additional challenges when considering
objects composed of heterogeneous materials, or when a mix
of non-rigid and rigid objects are present in the environment.

In complex situations involving the manipulation of non-
rigid objects, it is not feasible to rely on offline simulations to
derive a motion plan that guarantees object integrity, slippage
avoidance, or even the success of the manipulation, as this
would require perfect and complete a priori knowledge of
the objects, robot, and environment. Given the potentially
unpredictable behaviour of non-rigid objects, it is necessary
to rely on a real-time quality assurance scheme to ensure that
the above constraints are respected.

Another significant challenge in developing this module
is the availability of easy-to-integrate tactile sensors that are
accurate enough to perform contact detection and slippage
avoidance on soft non-rigid objects as well as the supporting
algorithms. Moreover, the real-time adaptation of the motion
plan to ensure the quality of the manipulation requires
fast and accurate models and algorithms for the tracking,
behaviour prediction, and control of deformable objects.

III. FRAMEWORK DEFINITION AND
DEVELOPMENT

A. Proposed Framework

Derived from observations on the state-of-the-art and our
previous work on the topic, Fig. 1 proposes a general
framework for the robotic manipulation of deformable ob-
jects based on visual and tactile sensing. This framework
is divided in three main stages, namely the initialization,
planning, and execution phases. In the initialization phase,
the system primarily uses visual information, from one or
more sensors, to identify the workspace and relative positions
of the robot, objects to manipulate, and any obstacles that
should be avoided. This stage also includes the task definition
by identifying the object to manipulate and the task to
perform along with desired locations, shapes or paths. In
the planning phase, initial knowledge of the object, task,
and robotic system is applied to derive grasping points and
trajectories for the robot and manipulator that are expected
to complete the defined task. Finally, the execution phase
is when the initial contact with the object is made and the
manipulation task is performed using real-time visual and
tactile tracking of the object. Running in parallel with the
manipulation task, we define a task-independent “quality
assurance” step to handle issues such as slippage avoid-
ance and maintaining the structural integrity of the object
throughout the manipulation. This part of the system is also
responsible for tracking the true behaviour of the object
under manipulation and updating the knowledge encoded in
the object model and behaviour prediction module, adapting
and changing the initial grasp and robot trajectory as nec-
essary. This adaptation behaviour would provide the system
with the flexibility to handle objects with initially uncertain
characteristics, including objects made of non-homogeneous

materials, or if a variety of rigid and non-rigid objects are
present.

B. From Simulation to Physical Manipulation

While much of the research on deformable object ma-
nipulation has so far relied on simulated environments,
transferring these skills to the physical manipulation of 3D
non-rigid objects presents substantial integration challenges
in all phases of the manipulation sequence.

In the initialization phase, multiview and multimodal
sensing capabilities are needed to obtain a complete de-
scription of the objects and environment due to occlusions
and limited prior knowledge. However, implementing these
sensing capabilities in the physical world requires careful
extrinsic calibration of all sensors as well as fusion of data
from multiple sources. Given the variety of sensor types
and modalities that may be involved, these tasks must be
carefully handled to generalize to different setups. Object
identification schemes used in initialization must also deal
with complex backgrounds and measurement noise that may
not be as significant in simulations.

In the planning phase, we note that modelling the physics
of deformable objects tends to be computationally expensive.
As such, when dealing with robotic applications, object
representations must be selected with care and optimized
to support real-time operation. Moreover, the physical char-
acteristics and mechanical accuracy of the robotic hands
and manipulators are taken into account: the selected grasp
points and motions are limited to those reachable by the
robot, and the motion planning aims to minimize the impact
of inaccuracies, for instance by avoiding grasps on sharp
corners.

When executing the manipulation task, it is important to
note that the modelling of deformable objects is more error-
prone than that of rigid objects as their shape and behaviour
can change during the manipulation. This calls for live grasp
stability verification and quality assurance throughout the
manipulation, which may also require updating the object
model and manipulation plan in real-time.

C. Sample Results

As a sample of our results obtained in [10] and [11],
Fig. 2a shows a spherical deformable object modelled using
an optimized neural gas network. Fig. 2b shows the grasp
and finger paths selected for deforming the initially circular
object into a rectangular shape (shown in gold) with the 3-
finger Barrett hand.

IV. CONCLUSION

When attempting to manipulate deformable objects with
a robot, it is crucial for the object to be correctly and
completely identified, or for the manipulation system to be
highly adaptable such that it may detect failures and adapt
to new information as the object is handled. Given the
complexity and variety of possible behaviours of non-rigid
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Fig. 1. Proposed framework for manipulation of non-rigid objects
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Fig. 2. (a) Optimized neural gas representation of a spherical object and
(b) selected grasp for object reshaping based on a 2D view

objects, it is not practical to rely on offline simulation for
planning robotic actions. This is especially true in cases when
the properties of the objects to handle are not fully known
beforehand, including when considering objects composed
of heterogeneous materials, or when a mix of different non-
rigid and rigid objects are present in the environment.

Based on these observations and the challenges high-
lighted, this paper proposes a general framework to handle
a mixture of potentially unknown, deformable objects in a
task-independent way. Many key challenges to overcome in
developing this system involve multi-view and multi-modal
sensing capabilities. These include the accurate detection and
tracking of deformable objects, strategies to deal with occlu-
sions, and reliable contact detection and slippage avoidance
systems for non-rigid objects. Moreover, it is essential to
develop fast and adaptable models that can be used to predict
the behaviour of deformable 3D objects in real time.
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